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Abstract. In the past few years, the Internet of Things has started to become a reality;
however, its growth has been hampered by privacy and security concerns. One promising
approach is to use Semantic Web technologies to mitigate privacy concerns in an informed,
flexible way. We present Carlton, a framework for managing data privacy for entities in a
Physical Web deployment using Semantic Web technologies. Carlton uses context-sensitive
privacy policies to protect privacy of organizational and personnel data. We provide use case
scenarios where natural language queries for data are handled by the system, and show how
privacy policies may be used to manage data privacy in such scenarios, based on an ontology
of concepts that can be used as rule antecedents in customizable privacy policies.
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1 Introduction

In the past few years, the Internet of Things (IoT) has started to become a reality. Advances like
affordable Bluetooth Low Energy devices, the Physical Web protocol, and ubiquitous devices such
as smart-phones and smart-watches make it possible for people to communicate with devices and
places in the world around them usefully and intuitively. Unfortunately, the lack of good privacy
and security solutions for ubiquitous sensors and interconnected devices is a continuing concern.
Existing approaches to managing privacy tend to assume a closed system, in which known users
with known needs can be matched to predefined policies; the open, mobile nature of the IoT requires
more semantically informed solutions. It is a system where devices need to advertise and discover
others in their vicinity, interoperate with them in a given context, and publish and honor their
privacy and security constraints.

The UN specialized agency responsible for issues concerning information and communication
technologies have defined the Internet of Things as a global infrastructure for the information
society, enabling advanced services by interconnecting (physical and virtual) things based on existing
and evolving interoperable information and communication technologies [18]. The Physical Web,
a concept first introduced by Google, is a concretization of IoT. As per Google’s definition, “The
Physical Web is an open approach to enable quick and seamless interactions with physical objects
and locations.” The Physical Web works by broadcasting small packets of data or URLs using the
Bluetooth Low Energy (BLE) protocol and beacons.

Over the past few years, we have observed a rise in usage of IoT devices in various domains.
However, the IoT domain has also been criticized for privacy and security issues that plague these
devices. One major cause for concern stems from a lack of interoperability among manufacturers and
the devices they create. Most IoT systems today are built in a bottom-up manner—that is, deployed



sensors talk to custom and proprietary gateways, which in turn expose proprietary services; at the
highest level manufacturers provide intelligent applications based on data from those services. This
vertical architecture, which is controlled by manufacturers, hampers horizontal interoperability [6]
across manufacturers. Meanwhile, a typical IoT deployment consists of a heterogeneous collection
of devices. As a result, it becomes difficult to create data privacy and security solutions.

Semantic Web technology uses the general Web architecture, e.g., URIs to access data, with
such access potentially controlled based on rules defined in a knowledge base (KB). Semantic Web
has been used to define access control rules in various domains, e.g., mobile applications, smart
meeting rooms, RDF triple stores, Social Media, etc. [22,2,8,11,4,27,3] In this paper, we present
the Carlton framework, which allows us to manage data privacy for entities in a Physical Web
deployment using Semantic Web technologies. We also present part of the Carlton ontology (see
Figure 2), which allows policies to be defined based on entity relationships.

Our proof-of-concept study involves a deployment at our organization, where we study a set of
use cases pertaining to queries about persons, places and events associated with the organization.
Our goal is to protect the privacy of organizational and personnel data. We examine cases where
a user’s data privacy is managed by their personal privacy policies. We also study scenarios which
handle data privacy in the absence of a personal privacy policy, or in case of queries about places
and events. Privacy policies in our framework are context-sensitive; as such, they are dependent on
user context, where a user is either (1): a person whose data is represented in the system; or (2): a
person who is querying the system. In the following sections we will describe the Carlton system
and some initial scenarios, followed by a discussion of ways in which a similar architecture could
support more sophisticated privacy reasoning.

2 Related Work

Role Based Access Control (RBAC) [9] and Attribute Based Access Control (ABAC) [23] are two
most popular access control models, that have been used to achieve the goal of managing access
control, in various domains. In the mobile domain, Ghosh et. al. [11] used a semantically rich
context model to manage data flow among applications and filter them at a deeper granularity
than it was possible using available security mechanisms on smart-phones. The CRêPE system [4]
was one of the earliest known ABAC model implementations using the XACML standard [12] for
fine-grained context-related policy enforcement on smart-phones. CRêPE didn’t use Semantic Web
but it followed the ABAC model. Carlton applies techniques learned in mobile domain to IoT
domain and uses context-sensitive policies to define access to organizational and personnel data. Our
access control model is an ABAC model where the attributes defining data access are ‘requesting
user’ context, ‘requested entity’ context and a query.

Using policy based security is not a new technique. Kagal et. al. [22] used distributed policy
management as an alternative to traditional authentication and access control schemes. Rei, a
policy language described in OWL and modeled on deontic concepts of permissions, prohibitions,
obligations and dispensations [20,22], have used Semantic Web technologies to express what an
entity can/cannot do and what it should/should not do. In Rei, credentials and entity properties
like user, agent, etc are associated with access privileges. This allowed Rei to describe a large
variety of policies ranging from security policies to conversation and behavior policies. The Rein
framework [21] which builds on Rei and is based on N3 rules and uses a CWM reasoning engine for
distributed reasoning. In Carlton we define data sharing policies that determines behavior of the
Physical Web-Mobile Agent interaction.



KAoS [28] relies on a DAML description-logic-based ontology of the computational environ-
ment, application context, and the policies. The KAoS system was capable of supporting runtime
policy changes and was extensible to a variety of platforms. In ROWLBAC [10], the Web Ontology
Language (OWL) [1] was used to support the standard RBAC model and extending OWL con-
structs used to model ABAC. All of these systems are using some Semantic Web technology for
their implementation. In our work, we use Semantic Web technology through an ontology to define
a hierarchical context model for a user and a requester an rules are defined using the Semantic
Web Rule Language [17] to determine access control decisions. In short, we are achieving the goal
of access control in a different domain with techniques that have been proven to work in other
domains. We do modify the system design, if and when required, to suite our needs for the IoT
domain and particular use cases we handle,

The hierarchical notion of context defined in this paper is an extension of our previous work [19,29]
where the part of relationship was defined for stating that a location is subsumed by another bigger
location. We have extended this notion to Identity context as explained in Subsection 3.2.

A model for context-sensitive policy based access control for IoT was presented in our previous
work [5], where we proposed a system design that achieves such a goal for a generic IoT environment.
We capture access control policies using the ABAC model represented in OWL. We used a vehicular
IoT use case for describing our policies in that work. Carlton in contrast doesn’t yet have a well-
defined mechanism for capturing policy modification, as defined in the other system. However,
Carlton handles far more complex use cases with respect to the contextual granularity of queries
made to the system.

Finally, we take a look at indirect vs obvious privacy implications. Ma et. al. [25] showed in their
study how a relatively small amount of ‘side’ information can lead to significant privacy concerns.
We try to address such issues with the current best available solution of writing a few general rules
to make our system usable. A detailed discussion on this can be found in the Section 4.1.

3 System Overview

The prototype Carlton application targeted in this work is a pervasive information system that
uses beacons (low powered, battery efficient devices that broadcast content over Bluetooth), fixed-
position kiosks, mobile devices, and a NLP engine to respond to natural language queries. Beacons
are deployed in key locations in the department, like offices, classrooms, and labs. The application is
intended to provide ‘Help Desk’-style information about an academic department, allowing people
to ask questions and get spoken responses, sometimes augmented with an appropriate display.

One of our goals is to design a system that could be installed by other university departments
and customized by providing a database of key information about its people and places. Both kiosks
and mobile devices use beacons to know their locations, using the Nearby Messages API [16]. This
maximizes portability and enables use of user location context when interpreting and responding
to questions, which allows responses to be physically informed. Table 1 shows a few examples of
supported question types, including possible privacy concerns; Section 5 gives more examples of
the kinds of questions Carlton is intended to address. Further details about context are inferred
using an ontology and external sources of data like a user’s calendar if it is shared with the system.

The Carlton system architecture is shown in Figure 1. The system is invoked by a user by
asking queries as either natural language text or speech through our kiosk or our Carlton Android
app. Spoken language is converted to text using a SpeechRecognizer service in the Android app,
that is part of Android SDK[14] or using the Cloud Speech API [15] in the kiosk. Text, whether



User Query Target Location
Additional
Context

Response

1
Faculty
member “Is this room

booked from
2PM-3PM?”

Conference
room

ITE
conference
room

User identity;
room calendar

“No; shall I book it for
2PM-3PM?”

2 Student
“No. See the front desk for
room reservations.”

3
Staff
member “Is Dr. Joshi

here?”

Dr. A Joshi
Main depart-
ment office

User identity;
target
disambiguation;
target location

“The chairman is not in
the office right now.”

4
Student
in class

Dr. K Joshi
Hall outside
faculty office

“No. Would you like to
hear her office hours?”

5

Visitor “Where is
Dr. Tim
Finin’s
office?”

Dr. T Finin

ITE building
third floor

Building office map;
target disambigua-
tion

“Please see the front desk
in ITE 325 for directions.”

6

Admin
building

Target disambigua-
tion

“Please see the publicly
available campus directory
or the information desk.”

7 Student
User identity; cam-
pus directory; target
disambiguation

“His office is in the ITE
building.”

Table 1: Several examples of queries handled by Carlton, showing the different forms of context
that can affect the answer. Column 1: the Carlton user. A “visitor” is a user who has provided
no identifiable information. Column 2: the user’s query. Column 3: the system’s determination of
the query target, based on context. Column 4: the position of the user, as detected by proximity to
BLE beacons. Column 5: additional contextual information, beyond location, that helps determine
the query response and allowable levels of information. Column 6: Carlton’s response. Target
disambiguation, privacy management, and access control are all managed by applying policy rules
to information in the knowledge base.

from the speech to text system or entered directly, is then processed using the Stanford CoreNLP
suite of tools [26] to do POS tagging, parsing and identify entities and relations. A simple system
takes this output and attempts to map it into one of the requests, questions or assertions that
our system can handle. The responses from our system are always in text form but if the query
was made using speech through the Carlton Android app, we use Android SDK’s TextToSpeech
service [13] to speak the response back to the user.

Context is retrieved from an ontology as well as from external sources such as location. Users
have the option of identifying themselves; users who lack credentials, or who do not identify them-
selves, will potentially receive more limited data, depending on privacy policies. A reasoning engine
uses inferred context, the user’s speech act and defined privacy policy as input, to reason over, and
infer the granularity at which data or descriptions will be shared in the response. After the response
is generated, a natural language query response is generated and presented, either as text or speech.
Table 1 shows some examples of queries, context, and responses.



Fig. 1: System architecture for
Carlton. The system is invoked by
natural language queries from a user
(either text or speech) and mapped
into one of the requests, questions
or assertions that the system can
handle. Context is retrieved from
an ontology as well as from external
sources such as location. After results
are retrieved and checked against
existing rules, a natural language
query response is presented.

3.1 Rules

Carlton uses context-sensitive privacy policy rules defined in the Semantic Web Rule Language
(SWRL) [17] to manage the privacy of data. The abstract syntax for SWRL rules follow the
Extended Backus-Naur Form (EBNF) notation which, while useful for XML and RDF serial-
izations, isn’t particularly easy to read. For readability, we use the following informal format:
antecedent ⇒ consequent. Antecedent(s) must hold for a consequent to apply. Multiple an-
tecedents in a rule are defined as a conjunctions of atoms. The consequent atom states whether the
access is allowed or denied.

Antecedents in our rule specification consist of the context of a requesting entity, along with
the entity type that is being requested, and may also include context for the entity whose data is
requested.

A more abstract representation may be considered as a triple (U, C, Q) which contains: U,
that represents requested user’s context, that is the user whose data is represented in the system.
C is requesting user’s context, that is the user who is querying the system. Q is the query that is
received by the system. The following is an example policy rule with instantiated values, based on
our ontology, which demonstrates how information is controlled by our system. Imagine a scenario
where Professor Xavier shares information about his present precise location with a person, if they
are member of his lab and he supervises them, given he is not speaking at a talk at the moment.
The first 8 predicates in this policy rule represent the requester student’s context. The next 8 relate
to the requested party’s context. The query is about location request and response from the system
is to share the location.

Example 1.
@prefix crltn:<https :// www.ebiquity.org/ontologies/carlton /0.1>.

@prefix swrlb:<http :// www.w3.org /2003/11/ swrlb >.

crltn:student (? requester) ∧
( crltn:supervises(“Xavier ′′ ,?requester) ∨

(crltn:affiliatedWith (?requester ,? labName) ∧
crltn:leads(“Xavier ′′ ,?labName )) ) ∧

crltn:hasCurrentLocation (?requester ,? aBldgLocation) ∧
crltn:room(? aBldgLocation) ∧



crltn:sitsIn(“Xavier ′′,aBldgLocation) ∧
crltn:currentTime (? currTime) ∧
swrlb:Exists (? anEvent) ∧
crltn:speakingAt(“Xavier ′′ ,?anEvent) ∧
( (crltn:startTime (?anEvent ,? eventStartTime) ∧

swrlb:greaterThan (? eventStartTime ,? currTime )) ∨
(crltn:endTime (?anEvent ,? eventEndTime) ∧
swrlb:greaterThan (?currTime ,? eventEndTime )) ) ∧

crltn:hasCurrentLocation(“Xavier ′′ ,?aLocation) ∧
crltn:Location (? aLocation) ∧
crltn:requestLocation(“Xavier ′′)

=⇒
shareLocation (? aLocation)

On the other hand, if a student is simply affiliated with the same department as he is, Professor
Xavier might share a generic location using the privacy policy rule shown below.

Example 2.
@prefix crltn:<https :// www.ebiquity.org/ontologies/carlton /0.1>.

@prefix swrlb:<http :// www.w3.org /2003/11/ swrlb >.

crltn:student (? requester) ∧
crltn:affiliatedWith (?requester ,? deptName) ∧
crltn:affiliatedWith(“Xavier ′′ ,?deptName) ∧
crltn:hasCurrentLocation(“Xavier ′′ ,?aLocation) ∧
crltn:Location (? aLocation) ∧
crltn:partOf (?aLocation ,?city) ∧
crltn:City(?city) ∧
crltn:requestLocation(“Xavier ′′)

=⇒
shareLocation (?city)

3.2 User Context Specification

Context has been defined by Dey and Abowd [7] as:

“[...] any information that can be used to characterize the situation of an entity (i.e., identity,
location, activity, time). An entity is a person, place, object or events that is considered rel-
evant to the interaction between a user and application, including the user and applications
themselves.”

In our system, user context is considered from a perspective of both who is querying the system
and who the query is about. Both of these user contexts include location, identity and activity
information. For the use cases discussed in this paper we have not considered temporal context.
We use the Physical Web to sense user location using beacons. This information is then sent to a
back-end knowledge base that uses a context ontology and an inference engine to determine user
location context. The identity context is defined by voluntary user sign-in and authentication. The
activity context is linked to the identity of a user in our system, as activity context is derived from
the user’s calendar data. This provides both static and dynamic context to evaluate against data
privacy rules.



An interesting feature of our system is that we wish to protect the privacy of the user querying
the system, as well as the information being queried. Identification does have privacy repercussions,
and therefore we have designed our system to be capable of working without identifying a user.
When context information is not available, or if only generic context information is available (e.g.,
‘the user is a student’), we evaluate data privacy rules accordingly by using rules with more generic
contextual antecedents. We are able to do this using our ontology, which allows location and activity
generalization by using partOf relationships among location entities and activity hierarchies. The
generalization technique described here is an extension of our work in data privacy in the mobile
domain [19,29,11]. We use the owl:sameAs property to incorporate certain classes and properties
from the Platys [19] and Place [29] ontologies. These ontologies have been previously used for
defining user location and activity context in a hierarchical manner.

This technique helps us preserve privacy by sharing data with varying levels of granularity, as
specified by policies. It involves replacing a value with a less specific but semantically consistent
value. As an example of location generalization, a user might define a policy stating that “My
building level location can be shared with my colleagues,” which allows partial location sharing
with anyone who is identified as a ‘colleague’, based on rules written in our system. In this case,
if an exact room location of a user is known, the ontology allows us to generalize to a building
using the “Part Of” transitive property. In our ontology Location is a super class of the Room,
Building, City, State and Country classes. The various sub-classes are used to denote different
levels of abstractions for the location.

Activity generalization is similar. Consider a case where we have a hierarchy of work activities:

working
partOf←−−−−− meeting

partOf←−−−−− department meeting
partOf←−−−−− lab meeting

This hierarchy lets a user define policies like “Share with team members when I am in a team
meeting” and “Share with team non-members when I am in a meeting.” This is especially useful if
we consider that a team meeting might be accessible only to team members, as it allows obfuscating
the data to just a “meeting” when the party querying the data is allowed some access but not access
to confidential team data.

We look at identity based generalization in this paper as an extension of the generalization
technique. Our ontology contains a Person class with a property affiliatedWith that defines if a
requester is “affiliated with” a university, department or research group. If the user is not affiliated
with any instances of these classes that match the affiliation of an entity whose data was requested,
we generalize the response accordingly. This allows us to define rules like “Share with non-members
of the organization only my city level location info”.

3.3 Semantic Knowledge

The Carlton ontology defines entity relationships between persons, locations and events in the
organizational structure. We are able to make inferences of the form described in Section 5 based on
the entity relationship properties defined in the ontology. See Figure 2 for details of the ontology. The
four primary classes defined in our ontology include Person, Location, Organization and Event.
A Person in our ontology might be a Faculty, Staff, Student or Visitor to the organization.
Organization is further broken into University, Department, ResearchGroup classes. Event have
the sub-classes Talk, Meeting and Course. For the Location class partOf relationship allows
hierarchical location context definition. The same applies to the Organization sub-classes. The
Person class allows us to infer affiliation with an Organization. A Visitor is a Person in our



ontology and might have a affiliation too, with an Organization but the instance of a visitor’s
Organization would not match Organization information for Faculty, Staff or Student from a
particular University that the Visitor does not belong to. We are able to infer Location of an
Event through the relationship heldAt between Event and Room classes. Obviously a Talk will be
held in a ConferenceRoom, a Course will be taught in a Classroom etc. where the rooms are types
of the Room class and therefore using the heldAt relationship we are able to infer triples that state
such a relationship. Similar inference maybe drawn for affiliation of a Faculty, Staff or Student

with a Department or ResearchGroup.

Fig. 2: Part of the Carlton prototype’s ontology, showing classes and properties for some events,
places, people and relations appropriate for an academic environment. The ontology will be ex-
panded and integrated with other LOD vocabularies in the future.

4 Privacy Implications

The system described in this paper takes steps towards fulfilling the promise of the Internet of
Things: it allows easy access to appropriately contextualized knowledge, making it possible for
users to find appropriate information quickly and easily while reducing administrative overhead.
Consistent with that, however, it also showcases some of the privacy concerns associated with
precisely those capabilities. In this section, we look at some of the ways in which privacy comes into
play in such a system, and discuss how using a semantically informed knowledge framework allows
for informed, appropriate behavior.

4.1 Privacy Stakeholders

One consideration when discussing privacy concerns is the correct identification of stakeholders,
individuals or groups whose privacy may be compromised. Some stakeholders are easily identified,
while others may be more subtle. The same is true of the possible impact of different kinds of
information access, that is, privacy failures may range from obvious to indirect. We consider three
possible stakeholders and, for each, discuss selected privacy concerns.



The most obvious stakeholder group is query targets: individuals about whom queries are posed.
Information about query targets may be very direct, as in location, or more general, such as working
at a particular research lab. In addition, this information varies in consistency across time: location
presumably changes frequently, whereas membership in the Faculty group is usually permanent.
Broadly speaking, query targets can be assumed to have some (but not complete) control over their
own information; as an example, the department may make information available about professors’
office hours, but not otherwise provide information from calendars, while an individual may choose
to make their meeting times available to their own students.

Less obviously, target privacy may also apply to entire organizations or subgroups. While an
academic department may be relatively public, some types of information may still be protected.
As an example, what research groups exist within the department is likely to be public information,
but the physical location of labs engaged in controversial research may not be. Similarly, a research
group may or may not choose to make their group meeting time public, depending on member
preference and research topic.

The final stakeholder whose privacy must be considered is the Carlton user. The pattern of a
user’s queries may reveal unwarranted information—for example, a professor might look askance on
a student continually asking about lab meeting times, even if the student is punctual; if a faculty
member consistently asks about the chair’s location and then manages to “just miss” him or her,
active avoidance might be deduced. Even a user who does not identify him or herself may be de-
anonymizable after relatively few queries. [25] In most cases, this may be addressed as treating
queries as strictly transient unless the user engages in an action that makes changes to the world
(e.g., reserving a conference room); however, this disallows logging of the sort that is commonly
used for debugging and system optimization.

4.2 Semantically Informed Access and Risks

Having a formal, semantic representation of the underpinnings of information to be accessed and
actions to be taken allows for the formal representation of policies as rules. Carlton combines
information about users, contexts, and query targets as antecedents to rules that allow users to
express complex sets of constraints on information that can be shared. Information can be controlled
based on the user or the query target (as shown in Example 2), the user’s location (as shown in
Table 1), or more generally—for example, the department might write default rules that prohibit the
sharing of information about peoples’ locations. Such a rule should include an antecedent specifying
that it applies only if there is no more permissive target-specific rule.

Semantic hierarchies also make it possible to provide “fall-upward” information. Example 1
shows a case in which only the City of the query target is explicitly provided, rather than the
specific location. However, because rules can be expressed with arbitrary complexity, such rules can
be specified implicitly in both antecedent and consequent. A generalized policy might, for example,
say “For members of the academic community, give a summary of my daily schedule; otherwise,
provide no information.” Such a policy would chain with more general rules about affiliation and
summarization; this is explored further in Section 5 below.

One notable category of privacy failures in a rule-based system is combinatorial failures, that is,
failures in which multiple pieces of allowed information lead to a conclusion that is not intended to
be public. This is a concern for overlapping rules with varying privacy implications. As an example,
Professor Grey does not allow anyone to see her location or calendar. Dr. Xavier does not allow
anyone to see his location, but allows his students to see his calendar, meaning that they can find



out that he is in a meeting with Dr. Grey and Dr. Hank McCoy. Dr. McCoy does not allow access
to his calendar, but makes his location available to anyone. With a small number of queries, Dr.
Xavier’s students can find the location and current calendar event of all three professors.

This is a difficult problem to address. Determining whether any combination of rules will allow
for unintended access would be excessively restrictive. More importantly, it is isomorphic to a
complete truth maintenance problem, and not tractable for a knowledge base of reasonable size.
While it is possible to write additional rules that explicitly restrict information access in addition
to explicitly exposing it, this solution is not logically complete and is, additionally, prone to logical
conflicts unless rules occur in a strict precedence ordering. The current best available solution is to
write relatively few, fairly general rules, and consider the output in different cases carefully; while
unsatisfying, this is currently the best case for achieving a usable system.

5 Use Case Scenarios

We are developing and testing the Carlton prototype in an academic Computer Science depart-
ment. A number of beacons have been deployed in our University’s Information Technology and
Engineering (ITE) building’s front office suite, offices of faculty members, labs and conference rooms.
Carlton is capable of handling a variety of natural language queries, e.g., “Who is Foggy Nelson?”,
“Where is Ben Ulrich’s office?”, “What does Matt Murdock teach?”, etc. Since we have installed
our system in an academic organization, we look at use cases that make sense in such a setting. We
will look at use cases in which personal data privacy policies have been set up by Professor Jean
Grey.

Use Case 1: Share specific information with people who are nearby and have a relationship
with the query target. Prof. Grey prefers certain private information to be shared with people she
knows who are near her office. She shares her private calendar data with students from a course she
is teaching and with people she advises. This may be defined using the rule: “Share my calendar
information with people I teach or supervise if they are near my office.” Such a query would have
relevance in case a student is standing in front of her office and wants to know when she will be
available for a meeting.

Use Case 2: Share only summary information with people who are far away and have a
relationship with the query target. Prof. Grey does not want her students to skip lab meetings
irrespective of whether she is busy in another meeting or not. Therefore, she sets up a policy stating
“Share only summary information from my calendar with people I supervise if they are far away
from my office.” According to this policy her students will only get to know that Prof. Grey is
available today and has some meetings unless they are already in the building.

Use Case 3: Share only publicly available data with unknown people. Carlton allows Prof.
Grey to block anyone who is not part of her group or school from getting any information from her
calendar or any other source that is private to her group or school. This is a special use case which
not only takes care of data privacy for the professor but it also takes care of privacy implications
from a requester’s perspective. We explain this further in Section 6.

Use Case 4: Share information about organization’s entities with people who are nearby and if
they belong to the group or organization. Now we look at privacy of a physical or virtual entity
of the organization. The entity in this scenario maybe a meeting room, a lab or an event. Prof.



Grey has a lab called PhoenixForce. PhoenixForce owns a meeting room denoted as ITE-1, two
labs named ITE-4 and ITE-5, and organizes an event called FallWelcomeBack. Only researchers
from her lab are allowed to book the meeting room, get access to the lab, or join the event. These
require that the requester has information about when the meeting room is available, whether lab
has empty seats, and where the event is. Carlton is thus able to use privacy policies like “Share
meeting room availability with members of PhoenixForce,” “Share lab empty seat count for ITE-4
if user is near ITE-4 and AND a member of PhoenixForce,” and finally “Share event location with
members of PhoenixForce if they are on campus.”

Use Case 5: Share public information about an organization’s entities with unknown people. In
this use case Carlton unaware of a requester’s identity, and therefore shares only publicly available
event information, public lab info and public meeting room data—for example, that PhoenixForce
does Robotics research and meeting room ITE325 is used for dissertation defenses.

These use cases are intended to showcase how data privacy for an individual or organization’s
entities are managed using Physical Web context discovery and by using privacy policies defined in
Semantic Web technologies.

6 Trusting the Physical Web

Although our query client includes a login option, it is not necessary for a user to log in in order to
query our system. One may observe that our use cases include scenarios where a user’s identity is
unknown. In these cases we do share less information but this acts as a feature of our system. If a
user logs into our app then they have authenticated themselves to our system and we may authorize
access to entities as per the privacy policies that have been defined. However, this means that the
system constantly knows who the user is and where they go and what they ask etc. This may be
considered as a violation of privacy of the requester.

In case of the physical web we may be able to determine where a particular user is at all times,
given enough number of beacons are used to ensure organization-wide coverage. We have thus
created a privacy issue for users requesting data from our system, as a side effect of actually trying
to manage data privacy for individuals and entities of the organization. How do we address this
issue? We have already alluded to a potential restriction on our system in Use Cases 3 and 5 that
will allow us to reduce some of the privacy concerns. By not making the login step mandatory, we
have reduced these privacy concerns. Queries are still responded to in this case but we generalize
our response based on the affiliation information that we might have.

Is it possible to authenticate a user without knowing the actual identity of the user? Yes, we
have implemented Authentication without Identification using Zero-Knowledge Proof as described
by [24]. This allows us to respond to user with a higher level of data granularity. For example all
group related data maybe exposed to a person who has been authenticated to be part of the group.
It’s worth noting that we will not be able to respond to queries where identity context match has
to be an exact match. For example if Prof. Grey queries the system about “When is my meeting
with Prof. Xavier scheduled?”.

The Carlton mobile app does not require any permission other than:

– android.permission.INTERNET

– android.permission.ACCESS FINE LOCATION

– android.permission.BLUETOOTH



These permissions are required to talk to the beacons over the BLE protocol and to obtain beacon
data and call back-end server for query responses over the internet. The location access is required
by the Nearby Messages API [16] which provides us with all the data associated with a beacon. No
identity based permissions are required by our app. Neither do we take device id information. The
Nearby Messages API doesn’t require user authentication for sharing data. As a result, the system is
designed to not share any identity information with the Google servers, in order to address privacy
concerns with regard to explicit associations being made between user identity and user location
by Google.

7 Conclusions and Future Work

In this paper, we have presented Carlton, a framework for managing data privacy for entities in
a Physical Web deployment using Semantic Web technologies. Our system used context-sensitive
privacy policies to protect privacy of organizational and personnel data. We have provided few use
case scenarios where natural language queries for data are handled by Carlton. We have explained
how privacy policies may be used to manage data privacy in such scenarios, based on an ontology
of concepts that can be used as rule antecedents in customizable privacy policies.

Although we have presented a few use cases in this paper, the number of scenarios are small
relative to fully functional, in-real-life system. The purpose of use cases that we have presented,
was to demonstrate the utility of Carlton. However, many more scenarios are possible and we
intend to explore them all eventually. A challenge that we constantly faced during this project was
managing the beacons when they are in close proximity. This problem was solved in a trivial manner
by reducing the signal strengths of the beacons. However, this still doesn’t handle conflict resolution
in presence of multiple beacons in close-proximity. Handling, such issues could be a challenging goal
to pursue, in the future.
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