
Abstract 

This paper presents a novel method, based on the 
Cyc Knowledge Base and Inference Engine, of 
gathering, organizing and sharing information 
about entities of interest (be they people, organi-
zations, events or some other type of entity). The 
formal representations used in the Fact Sheets al-
low users to easily share information with oth-
ers, run automated queries against the informa-
tion, and allow the system to attempt to auto-
matically gather and verify information before 
presenting it to the analyst.  The system auto-
matically keeps track of provenance (both which 
document a fact came from, and who interpreted 
the document).  When gathering information 
automatically, the system produces a variety of 
search strings (using all known names for the en-
tity) and then scours its sources for possible an-
swers. Individual analysts can specify what types 
of information they are interested in for different 
types of entities, and can also specify additional 
patterns that can be used for finding that type of 
information. Once knowledge has been retrieved 
from the Web (or any other textual corpus) and 
ingested by the system, it is available to other 
analysts both for their own queries, and also to 
fit into Fact Sheets of their own design.  

1. Introduction 
This paper presents a novel method, based on the CycTM 
Knowledge Base and Inference Engine, of gathering, 
organizing and sharing information about entities of 
interest (be they people, organizations, events or some 
other type of entity). Fact Sheets are something that an 
analyst could call up for a particular entity or event to see 
what is known about it.  The Fact Sheet would display 
the known information, and also note where information 
is missing.  The user could direct the system to try to find 
the answer, or, if an analyst knows the missing 

information, they would be able to enter it directly.  Once 
the system’s research has been completed, the updated 
Fact Sheet can be viewed and manipulated by the analyst. 
The formal representations used in Fact Sheets allow 
users to arrange and store information about entities and 
events, which can then be easily shared with others, can 
be used in running automated queries, and allow the 
system to attempt to automatically gather and verify 
information before presenting it to the analyst.  The 
system automatically keeps track of the provenance for 
facts that it discovers (which document a fact came from, 
and where) and information entered by users (which user 
entered it, and what source the user got it from).  In order 
to gather information automatically, the system produces 
a variety of search strings (using all known names for the 
entity) and then scours its sources for possible answers. 
Individual analysts will be able to specify what types of 
information they are interested in for different types of 
entities, and will also be able to specify additional 
patterns that can be used for finding that type of 
information. Once knowledge has been retrieved from the 
Web (or any other textual corpus) and ingested by the 
system, it is available to other analysts both for their own 
queries, and also to fit into Fact Sheets of their own 
design. 

2. What are Fact Sheets? 
Fact Sheets for individual entities show various facts 

that the system knows about the entity, along with the 
sources for the facts.  The system was originally 
developed for Cyc’s Terrorism Knowledge Base 
(TKBTM) as a way to allow Subject Matter Experts 
(SMEs) to enter knowledge into the system quickly, and 
to query the system for entities or events with certain 
characteristics.  Using this method, SMEs have been able 
to enter information into the TKB from relevant 
documents at rates of up to 100 facts per hour.  The 
system is also keeping track of where each fact came 
from, and can display that information to subsequent 
users of the facts. 
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Because Fact Sheets are represented in the KB, it will 
be possible for users to modify them, for different users 
to have Fact Sheets with different types of information 
for the same type of entity, and for the system to suggest 
additional fields a user might want to see (e.g. if it is not 
already on the Fact Sheet for Peruvian companies, the 
system might suggest adding ‘annual revenue’, based on 
the fact that it knows the annual revenue of more than 
10% of such companies.)   Likewise, rules could be 
created and modified by users to automatically add new 
fields to the Fact Sheets for certain types of entities or 
events, but not for others. 
 Users can use the same interface to search for entities 
by specifying a set of constraints that needs to be 
satisfied.  For example, when searching for terrorist 
organizations founded in 1991, six are returned, but 
narrowing the search to organizations with Islam as the 
religion or ideology that were founded in 1991 returns 
only two answers: Abu Sayyaf and Adolat, an Uzbek 
group.   
 Many other types of queries are also possible against 
the knowledge present in the TKB.  See Deaton, et al. 
(2005) for more details. 

3. Fact Gathering and Verification 
In addition to allowing SMEs and analysts to put 
information into the system and perform queries against 
it, the system is also capable of autonomously gathering 
facts for relevant entities.  The fact gathering system uses 
a multi-step process to gather and verify information 
from textual sources.  The current implementation uses 
the portion of the web accessible via Google for its 
corpus and has a small number of possible verification 

techniques. It should be simple to add new verification 
methods and target the system at different corpora.  

3.1.  Fact Gathering 

3.1.1.  Entity Typing 
The first step in gathering facts about an entity is 
determining what type of entity it is.  For many entities 
(e.g. the 2249 terrorists and 810 terrorist organizations in 
the TKB), the system can look the name up in the 
Knowledge Base and determine the types from there.  
When the system does not already know the entity, a type 
must be determined.   The number of base types 
(Collections in Cyc) that the system attempts to identify is 
in the thousands, but because the type system we utilize 
is recursively combinable, the total number of types the 
system could theoretically identify is infinite.  
 The system determines the type of an entity by looking 
up the name in Google, and gathering sentences from the 
returned documents that mention the entity.  The first 
step is to run the sentences through a named entity 
recognizer (NER) to get a coarse typing (we use both 
Klein, et al. 2003, Prager, et al. 2000).  The system then 
determines type-strings from these entity mentions.  One 
method for determining an entity’s type is to look for 
particular patterns in parses that are diagnostic of 
descriptions.  The system uses both the Charniak parser 
(Charniak 2001) and the Link parser (Sleator and 
Temperley 1993) for this.  Charniak is used primarily for 
post-nominal appositives like “Abu Sayyaf, a Filipino 
terrorist group”, while the Link parser is used primarily 
to find pre-nominal descriptions, such as “Filipino 
militant group Abu Sayyaf.”  The resulting type-strings 
(“Filipino militant group” and “a Filipino terrorist 

Figure 1: Fact Sheet for Abu Sayyaf.  Clicking on the source 
icon  triggers the system to show the provenance of the fact.  
More information about the source is also available. 



group”) are fed through the system’s semantic parser to 
determine a type.  In cases where the system is unable to 
understand the entire string, a back-off strategy is used to 
try to parse progressively smaller pieces of the type 
string, ending with the system trying to understand just 
the head of the type string.  For the examples presented 
here, the types would include1: 

Types for Abu Sayyaf: 
(SubcollectionOfWithRelationToFn TerroristGroup 
   groupMemberType PhillipinesPerson)  
“terrorist group composed of Filipinos” 
 
(SubcollectionOfWithRelationToFn TerroristGroup  
   hasHeadquartersInRegion Philippines) 
“terrorist group headquartered in the Philippines” 

In cases where no tighter type can be found, the system 
uses the types generated by the named entity recognizer.  
When the types produced by Cyc are consistent with the 
types returned by the NER, the more specific Cyc types 
are used.  When there is a conflict (e.g. an entity is typed 
by the NER as an Organization, but Cyc types it as a 
prime minister), the type produced by the NER is used.  
We will likely change this behavior in the near future, 
since it appears that in most of these cases, if Cyc 
produces a type that conflicts with the NER type, the 
NER has made a mistake.  If the system attempts to fall 
back on the NER results and the NERs disagree, both 
types are attempted. 

3.1.2.  Targeted Fact Gathering 
After typing an entity, the system works out what types 
of facts should be gathered.  In the current 
implementation, the system determines which fields a 
Fact Sheet for that sort of entity would contain, and looks 
for those types of facts.  There are currently two types of 
Fact Sheets: one type is manually created, while the other 
is induced based on facts extant in the knowledge base.  
The approximately thirty types of manually created Fact 
Sheets have typically been created for specific well-
defined knowledge entry tasks. 
 The other way of determining what facts might be 
usefully searched for involves looking at similar entities 
and the types of information that are available for those 
entities.  A field will be included for an entity type if at 
least 1% of such entities (and at least 2 entities) have that 
type of information specified in the KB.  For example, 
because Cyc commonly knows members, leaders, 
founding dates, and sub-organizations of 
OrganizationOfOrganizations, these types of information 
are all deemed relevant when gathering facts about the 
United Nations.  The system currently contains inferred 
Fact Sheet templates for 1171 different entity types. 
 After determining what types of facts to search for, the 
system constructs search-strings that can be sent to an IR 
                                                 

1 The system currently produces additional types, and addi-
tional work will be necessary to weed out the inappropriate 
answers. 

engine.  The system constructs a variety of search-strings 
using manually created templates along with lexical 
information present in the KB for the entities in question.  
For example, for the query (foundingAgent 
AbuSayyafGroup ?X), the system constructs 40 different 
strings, including: 

Sample search strings for  
  (foundingDate AbuSayyafGroup ?X) 
 
Abu Sayyaf was founded in ____ 
Al Harakat Islamiya, established in ____ 
ASG was established on ____ 

 The search strings are constructed using the same 
infrastructure (both representation and code) that is used 
ubiquitously in Cyc for constructing English 
representations of CycL assertions.  For several reasons, 
however, we chose not to use the standard generation 
templates.  The first reason is that much of the target 
information in the corpus is not typically stated as a 
simple fact, but rather as a qualification or addendum to 
some other fact, while Cyc generation templates are 
generally designed to express the single facts as 
sentences.  Thus, for founders, Cyc ordinarily generates 
“Abu Sayyaf was founded in 1991”.  Using Cyc’s 
standard English generation for these facts would miss 
many of the common patterns, such as “Abu Sayyaf, 
established in 1991, …”.  Second, because Cyc typically 
has been optimized to convey all the details of logical 
representations, English generation can be quite stilted, 
and therefore be unlikely to be matched in a corpus. 
 In order to find answers for the queries, the system 
strips blanks and submits the result as a quoted string to 
the search engine (e.g. “Abu Sayyaf was founded in”).  
Upon receiving the results from the search engine, the 
system downloads the documents and searches through 
them for sentences that contain the search string. 
 To produce a candidate assertion, the system looks at 
the portion of the sentence where the blanks would have 
been.  The system then attempts to interpret that string as 
something that meets the constraints set forth by the 
predicate.  In this case, foundingDate requires that its 
second argument be a Date.  Accordingly, the system 
attempts to interpret the selected string as a date, 
expanding the size of the window until it finds a date or 
reaches a pre-determined maximum length.  For example, 
“the early 1990s” parses to (EarlyPartFn (DecadeFn 
199)), while “1991” parses to (YearFn 1991). 

3.2.  Fact Verification 
Before actually asserting anything into the Knowledge 
Base, the system attempts to verify the ‘facts’.  The 
system uses several different methods for verification.  
The first involves a KB consistency check.  For example, 
the system can reject ‘facts’ because there can only be 
one possible answer, and the answer is already known.  
For this reason, the system would reject an assertion that 
Dallas, TX is the capital of the U.S., since Cyc already 
knows that Washington, DC is the capital.  Previous 



work by Cycorp suggests that a one-step inference is 
generally enough to find contradictions (Panton, et al. 
2002).  When a fact is already known, the system ceases 
verification.  In the future this procedure will add 
redundant justifications to already-known facts so that 
the system will know that there are multiple sources that 
all convey the same fact. 
 The first verification mode serves to weed out 
information that is known to trivially conflict with the 
Cyc KB, but there are large amounts of information that 
would be consistent with the Cyc KB, but still wrong.  
For instance, the sentence (foundingAgent 
AbuSayyafGroup EdBuckham) doesn’t obviously 
contradict anything in the Cyc KB, but is nevertheless 
false.  To rule out such answers, the system performs an 
additional verification step by rerunning the search with 
the string generated for the complete fact.  In cases where 
the search string uses an abbreviation or acronym, an 
additional disambiguation string is added: the least 
common word in the expanded acronym, based on 
Google hits.  In this case, “Sayyaf” was be added to 
“ASG was founded by”, thereby eliminating documents 
that used ASG to refer to “Alexander Strategy Group”, 
which was in fact founded by Ed Buckham. 

Once additional facts have been found by the system, 
analysts will be able to view those facts in the Fact Sheet, 
along with the sources for them.  While we would like to 
claim that it will only produce true facts, that is not the 
case.  Luckily, this is not an insurmountable problem; 
recall that the system-gathered facts will be viewed using 
an interface that is also used for manual knowledge entry.  
This will allow users to view the provenance of the 
assertions and remove those that are false.  For example, 
when gathering facts about countries, the system came up 
with the following ‘fact’: 

(sellsProductType Germany 
 (SubcollectionOfWithRelationFromFn Soul-Spiritual 
  possessiveRelation  
  (PronounFn ThirdPerson-NLAttr Singular-NLAttr  
    Neuter-NLAttr PossessivePronoun-Pre))) 
“Germany sells its soul” 

Obviously, despite its verbatim appearance in the corpus, 
this is not the sort of ‘fact’ that would withstand scrutiny, 
and an analyst could easily mark this fact as false, 
thereby removing it and ensuring that it doesn’t reappear. 

4. Result Analysis 
For the work reported here, we limited the system to 
looking at no more than the first 20 hits for any search 
string.  This was done in large part because of limitations 
on the number of permitted queries against the Google 
API.   

One restriction in the current system is that, except for 
dates, it will only return answers that are already reified 
concepts in the Cyc KB.  This has the effect of drastically 
limiting the possible results for some types of queries.  
For example, Cyc only knows a relatively small number 

of companies.  As such the system will reject the 
employers for the vast majority of people. 

In a test of twelve US presidents chosen randomly 
(famous people were chosen because we were fairly 
certain that relevant data would be available on the web), 
the system was able to correctly determine the date of 
death for seven of them, was only able to find dates 
without years for three more, and failed to find any 
death-dates for the remaining two.  For birth dates, the 
system found the correct answer for ten, found no answer 
for one, and found only a date without a year for one. 

There were several errors in this task, including a 
death date for Franklin Pierce of October 8, 1809 in 
addition to his actual death on October 8, 1869.  This is a 
result of the garbage-in garbage-out principle—one web 
page erroneously stated that Pierce died in 1809.  One 
solution to this problem lies in weighting the answers 
according to the number of times each answer was found.  
Even though the system looked at fewer than twenty 
pages, it found three that included the correct death date, 
and just one with the incorrect date.  A search through 
more documents would doubtless reveal that many more 
documents state that he died in 1869. 

We expected ambiguity to be a serious problem, but it 
turned out to be less of a problem than we expected.  The 
system found an incorrect death date for only one of the 
presidents because of a naming ambiguity (Benjamin 
Harrison, who died in 1901, was also alleged to have 
died in 1925).  The nature of the search results that 
Google returns, along with the fact that we tested the 
system using famous people, probably reduced ambiguity 
by biasing the system towards only seeing results that 
were for the presidents. 

The system also spent substantial time looking for 
information that turned out to be very difficult to find in 
texts.  For example, for all people, the system attempts to 
find out what languages the person speaks, what areas 
they were educated in, who they work for, what their 
email address is, and a variety of other things that proved 
difficult to find.  Although the corpus and type of entities 
searched for were helpful in reducing ambiguity, we 
believe that they worked against the system when trying 
to find these types of information.  Language spoken, for 
example, is not commonly discussed for US presidents in 
the English documents that Google returned.   

Table 1 shows results for 24 FamousHumans, 
including the 12 presidents just discussed.  A sentence 
was judged plausible if it was a reasonable reflection of 
the content of the document, and implausible if it 
conveyed content not clearly in the document.  Many of 
the sentences found were already known by Cyc, but 
even more were novel, and the number of sentences 
asserted when they should not have been was relatively 
low (only 27% of the total unique sentences the system 
considered). Even though the system typically only 
looked through 10-20 documents for each fact 
(predicate/person pair), a substantial number of 
duplicates were encountered. 



 
 Unique Sentences Total 
Plausible 96 161 
  Already Known 30 79 
  Novel 66 82 
Implausible 41 67 
  Provably Incorrect 4 9 
  Wrongly Asserted 37 58 
% incorrectly asserted 27%  

(37/137) 
25% 

(58/228) 
Table 1: Results of fact-finding for information about 17 
predicates and 24 arbitrarily chosen instances of 
FamousHuman. 
 

Several types of information that we initially tried to 
gather using specific search strings turned out to be 
poorly suited to this mechanism, but are well suited to 
other methods, including the entity typing methods 
discussed earlier.  For example, to find the ethnicity of 
Abdulrajik Janiani, the system searches for strings 
including “____ leader Abdurajak Janjalani”, which 
yields 19 documents, none of which yield an ethnicity 
using this technique.2  On the other hand, using the 
entity-typing methods, the search string would be just 
“Abdurajak Janjalani”, the 18th document contains an 
appositive description of Janjalani as “a Philippine 
Muslim”, which would be enough for the system to 
determine not only his ethnicity but also his religion. 

The system also searched for marital status, attempting 
to find a term that would map directly to Married or 
Divorced.  While this technique might work well for 
Divorced, there are much better tips that a person is 
married.  In particular, any mention of “X’s wife” or 
“X’s husband” is sufficient to determine that X is 
married, regardless of whether the spouse is mentioned 
by name.  Clearly, a technique capable of using these 
types of cues would yield better results. 

In an initial experiment to gauge the promise of the 
system, 17 instances of FamousHuman (different from 
those used for fact-finding above) were run through the 
system.  The NERs produced incorrect types for two of 
the 17.  The system found more detailed type information 
for nine of the 17.  Accurate information was found for 
all nine, although two of the nine also yielded incorrect 
information (e.g. a prime minister was understood to be a 
secretary-general).  

Analysis of the work done by the entity-typing system 
also turned up several interesting issues. Because the 
system uses multiple sentences mentioning the same 
entity, the NERs produced conflicting types for two of 
the 17 entities.  This is clearly undesirable, and a simple 
voting scheme should be more than sufficient to deal 
with this problem.  In both of these cases, there was one 
false typing and numerous correct typings for the entity. 
                                                 

2 This search does, however, yield many hits that contain the 
information that he is the leader of Abu Sayyaf. 

Another issue arises with entities that change type over 
time.  For example, for political figures it is quite 
common that they will, over the course of their career, 
hold several different positions.  The system typed 
Shimon Peres as a prime minister, deputy prime minister, 
and foreign minister.  By asserting these facts into 
contexts that are agnostic about time, it is possible to 
assert that Shimon Peres is all of these things, and this is 
sufficient for many uses of this information. 

5. Future Work & Conclusion 
 Looking forward, we would like to extend this system 
in a number of ways.  In terms of the Fact Sheet user 
interface, we already have the ability for users to modify 
the knowledge about the entities, but do not yet have the 
ability for analysts to modify the format of the Fact 
Sheets.  Future interface work will focus on allowing 
analysts to manipulate the order and type of fields in Fact 
Sheets, adding additional modalities to the Fact Sheets 
(e.g. pictures), and dynamic updating of Fact Sheets, with 
notification when new information is found about an 
entity. 
 On the fact-gathering side, we are planning several 
extensions.  One extension is the ability to gather facts 
from documents in Chinese, and display the results (in 
English) as part of a Fact Sheet.  Initially, we will do this 
by exploiting existing Chinese-English lexica, combined 
with our existing English-CycL lexicon to produce a 
prototype Chinese-CycL lexicon.  With the additional 
semantic constraints that we will bring to bear from the 
logical representation in the Cyc KB, we believe that we 
will have a reasonable chance of achieving a measurable 
level of success using this simple method, though we 
expect to get substantially poorer results than we get with 
English texts. 
 As mentioned earlier, the system currently accepts 
only known entities as possible fillers.  In an intelligence 
analysis domain where discovering new players is 
important, this is clearly too strong a condition for 
acceptance.  Instead, we will run the process described 
here recursively.  Once a possible entity has been 
identified, the system will attempt to determine the type 
of that possible entity.  If a type can be determined that is 
consistent with the requirements of the field it will fill, 
we will create a record for that entity and allow its use 
henceforth. 
 It is worth noting that entities in the Cyc KB can have 
multiple names (or aliases) associated with them.  For 
example, if the system has three different entities named 
“Abdul”, it is not obvious which of them a particular 
extracted fact should be associated with.  In future 
versions, we will allow facts that might map to several 
entities to be asserted for all of the possible entities, 
along with an assertion stating that this fact is really only 
true of one of the entities.  If any of these facts is ever 
used in a justification, the analyst will be alerted and 
encouraged to look at the source document to confirm or 
deny that the fact is asserted on the correct entity. 



In an effort to get information that cannot be easily 
gathered using the string-based fact-gathering system, we 
also hope to include more of the information that we can 
gather with our existing sentence-level parsers.  See 
below for an example parse of a sentence retrieved from 
Google for Abu Sayyaf: 

Correct semantic parse for 
“In May 2001, Abu Sayyaf kidnapped 20 people, 
including three Americans” 
 
 (thereExistAtLeast 20 ?PEOPLE18 
   (and  
    (isa ?PEOPLE18 Person)  
    (thereExists ?KIDNAPPED7  
     (and  
       (agentCaptured ?KIDNAPPED7 ?PEOPLE18)  
       (isa ?KIDNAPPED7 KidnappingSomeone)  
       (perpetrator ?KIDNAPPED7 AbuSayyafGroup)  
       (in-UnderspecifiedContainer ?KIDNAPPED7  
         (MonthFn May (YearFn 2001))))))) 
“20 people were kidnapped (in at least one 
kidnapping) in May 2001 by Abu Sayyaf.” 

Once facts like these have been gathered, the users will 
be able to expand upon the knowledge automatically 
gathered to include other information present in the 
sources that the system was unable to understand. 

A natural extension to the fact gathering system 
described here is the integration of an existing relational 
information extraction system.  While relational IE 
systems do not attempt to provide answers to all the 
different types of facts that our system looks for, they 
typically do a good job at finding some of these types of 
information, and we are actively looking for 
opportunities to integrate with such systems.  The 
additional semantic interpretation that this system 
performs has the ability to eliminate some of the false 
positives that IE systems typically generate.  Similarly, 
the Fact Sheet interface will allow users to provide 
additional information (e.g. other names for an entity) 
that can be used to merge some of the entities found by 
IE systems, resulting in better information than either 
type of system could achieve on its own. 

One open question is how well this system will 
function with a different corpus, such as that which might 
be found in a classified environment.  We do not believe 
that different methods of accessing the corpus (e.g. not 
being able to rely on page-rank to order the documents) 
will substantially hinder the system.  In fact, because 
news articles tend to be very infrequent in Google’s top 
results, working on a system without page rank may 
result in better results, as news articles tend to be packed 
with the sorts of information that our system gathers 
fairly well.  Future tests of the system will include 
looking at news corpora in addition to the information 
returned by standard web-search engines. 

We believe that this system shows substantial promise 
as a tool that analysts can use to gather, store, and 
arrange information.  Because all the information is 

stored in a formal representation, others can readily reuse 
it, and any updates to that information that an analyst 
decides to make will be automatically disseminated to 
other users.  The fact-gathering ability of the system, 
already substantial, will only increase as more methods 
are implemented and existing methods are extended and 
refined.  Preliminary results reported elsewhere 
(Matuszek, et al., submitted) indicate that the verification 
steps described here can reduce the number of false 
positives by nearly 90%. 
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