
Abstract

This paper presents a novel method, based on the
Cyc Knowledge Base and Inference Engine, of
gathering, organizing and sharing information
about entities of interest (be they people, organi-
zations, events or some other type of entity). The
formal representations used in the Fact Sheets al-
low users to easily share information with oth-
ers, run automated queries against the informa-
tion, and allow the system to attempt to auto-
matically gather and verify information before
presenting it to the analyst. The system auto-
matically keeps track of provenance (both which
document a fact came from, and who interpreted
the document). When gathering information
automatically, the system produces a variety of
search strings (using all known names for the en-
tity) and then scours its sources for possible an-
swers. Individual analysts can specify what types
of information they are interested in for different
types of entities, and can also specify additional
patterns that can be used for finding that type of
information. Once knowledge has been retrieved
from the Web (or any other textual corpus) and
ingested by the system, it is available to other
analysts both for their own queries, and also to
fit into Fact Sheets of their own design.

1. Introduction
This paper presents a novel method, based on the CycTM
Knowledge Base and Inference Engine, of gathering,
organizing and sharing information about entities of
interest (be they people, organizations, events or some
other type of entity). Fact Sheets are something that an
analyst could call up for a particular entity or event to see
what is known about it. The Fact Sheet would display
the known information, and also note where information
is missing. The user could direct the system to try to find
the answer, or, if an analyst knows the missing

information, they would be able to enter it directly. Once
the system’s research has been completed, the updated
Fact Sheet can be viewed and manipulated by the analyst.
The formal representations used in Fact Sheets allow
users to arrange and store information about entities and
events, which can then be easily shared with others, can
be used in running automated queries, and allow the
system to attempt to automatically gather and verify
information before presenting it to the analyst. The
system automatically keeps track of the provenance for
facts that it discovers (which document a fact came from,
and where) and information entered by users (which user
entered it, and what source the user got it from). In order
to gather information automatically, the system produces
a variety of search strings (using all known names for the
entity) and then scours its sources for possible answers.
Individual analysts will be able to specify what types of
information they are interested in for different types of
entities, and will also be able to specify additional
patterns that can be used for finding that type of
information. Once knowledge has been retrieved from the
Web (or any other textual corpus) and ingested by the
system, it is available to other analysts both for their own
queries, and also to fit into Fact Sheets of their own
design.

2. What are Fact Sheets?
Fact Sheets for individual entities show various facts

that the system knows about the entity, along with the
sources for the facts. The system was originally
developed for Cyc’s Terrorism Knowledge Base
(TKBTM) as a way to allow Subject Matter Experts
(SMEs) to enter knowledge into the system quickly, and
to query the system for entities or events with certain
characteristics. Using this method, SMEs have been able
to enter information into the TKB from relevant
documents at rates of up to 100 facts per hour. The
system is also keeping track of where each fact came
from, and can display that information to subsequent
users of the facts.

Gathering and Managing Facts for Intelligence Analysis

David Schneider, Cynthia Matuszek, Purvesh Shah, Robert Kahlert,
 David Baxter, John Cabral, Michael Witbrock, Douglas Lenat

Cycorp, Inc.
3721 Executive Center Dr., Suite 100

Austin, TX, 78731USA
{daves, cyndy, shah, rck, baxter, jcabral, witbrock, lenat}@cyc.com

Keywords: Information Sharing and Collaboration, Information Extraction and Link Analysis, Question Answering

Because Fact Sheets are represented in the KB, it will
be possible for users to modify them, for different users
to have Fact Sheets with different types of information
for the same type of entity, and for the system to suggest
additional fields a user might want to see (e.g. if it is not
already on the Fact Sheet for Peruvian companies, the
system might suggest adding ‘annual revenue’, based on
the fact that it knows the annual revenue of more than
10% of such companies.) Likewise, rules could be
created and modified by users to automatically add new
fields to the Fact Sheets for certain types of entities or
events, but not for others.
 Users can use the same interface to search for entities
by specifying a set of constraints that needs to be
satisfied. For example, when searching for terrorist
organizations founded in 1991, six are returned, but
narrowing the search to organizations with Islam as the
religion or ideology that were founded in 1991 returns
only two answers: Abu Sayyaf and Adolat, an Uzbek
group.
 Many other types of queries are also possible against
the knowledge present in the TKB. See Deaton, et al.
(2005) for more details.

3. Fact Gathering and Verification
In addition to allowing SMEs and analysts to put
information into the system and perform queries against
it, the system is also capable of autonomously gathering
facts for relevant entities. The fact gathering system uses
a multi-step process to gather and verify information
from textual sources. The current implementation uses
the portion of the web accessible via Google for its
corpus and has a small number of possible verification

techniques. It should be simple to add new verification
methods and target the system at different corpora.

3.1. Fact Gathering

3.1.1. Entity Typing
The first step in gathering facts about an entity is
determining what type of entity it is. For many entities
(e.g. the 2249 terrorists and 810 terrorist organizations in
the TKB), the system can look the name up in the
Knowledge Base and determine the types from there.
When the system does not already know the entity, a type
must be determined. The number of base types
(Collections in Cyc) that the system attempts to identify is
in the thousands, but because the type system we utilize
is recursively combinable, the total number of types the
system could theoretically identify is infinite.
 The system determines the type of an entity by looking
up the name in Google, and gathering sentences from the
returned documents that mention the entity. The first
step is to run the sentences through a named entity
recognizer (NER) to get a coarse typing (we use both
Klein, et al. 2003, Prager, et al. 2000). The system then
determines type-strings from these entity mentions. One
method for determining an entity’s type is to look for
particular patterns in parses that are diagnostic of
descriptions. The system uses both the Charniak parser
(Charniak 2001) and the Link parser (Sleator and
Temperley 1993) for this. Charniak is used primarily for
post-nominal appositives like “Abu Sayyaf, a Filipino
terrorist group”, while the Link parser is used primarily
to find pre-nominal descriptions, such as “Filipino
militant group Abu Sayyaf.” The resulting type-strings
(“Filipino militant group” and “a Filipino terrorist

Figure 1: Fact Sheet for Abu Sayyaf. Clicking on the source
icon triggers the system to show the provenance of the fact.
More information about the source is also available.

group”) are fed through the system’s semantic parser to
determine a type. In cases where the system is unable to
understand the entire string, a back-off strategy is used to
try to parse progressively smaller pieces of the type
string, ending with the system trying to understand just
the head of the type string. For the examples presented
here, the types would include1:

Types for Abu Sayyaf:
(SubcollectionOfWithRelationToFn TerroristGroup
 groupMemberType PhillipinesPerson)
“terrorist group composed of Filipinos”

(SubcollectionOfWithRelationToFn TerroristGroup
 hasHeadquartersInRegion Philippines)
“terrorist group headquartered in the Philippines”

In cases where no tighter type can be found, the system
uses the types generated by the named entity recognizer.
When the types produced by Cyc are consistent with the
types returned by the NER, the more specific Cyc types
are used. When there is a conflict (e.g. an entity is typed
by the NER as an Organization, but Cyc types it as a
prime minister), the type produced by the NER is used.
We will likely change this behavior in the near future,
since it appears that in most of these cases, if Cyc
produces a type that conflicts with the NER type, the
NER has made a mistake. If the system attempts to fall
back on the NER results and the NERs disagree, both
types are attempted.

3.1.2. Targeted Fact Gathering
After typing an entity, the system works out what types
of facts should be gathered. In the current
implementation, the system determines which fields a
Fact Sheet for that sort of entity would contain, and looks
for those types of facts. There are currently two types of
Fact Sheets: one type is manually created, while the other
is induced based on facts extant in the knowledge base.
The approximately thirty types of manually created Fact
Sheets have typically been created for specific well-
defined knowledge entry tasks.
 The other way of determining what facts might be
usefully searched for involves looking at similar entities
and the types of information that are available for those
entities. A field will be included for an entity type if at
least 1% of such entities (and at least 2 entities) have that
type of information specified in the KB. For example,
because Cyc commonly knows members, leaders,
founding dates, and sub-organizations of
OrganizationOfOrganizations, these types of information
are all deemed relevant when gathering facts about the
United Nations. The system currently contains inferred
Fact Sheet templates for 1171 different entity types.
 After determining what types of facts to search for, the
system constructs search-strings that can be sent to an IR

1 The system currently produces additional types, and addi-
tional work will be necessary to weed out the inappropriate
answers.

engine. The system constructs a variety of search-strings
using manually created templates along with lexical
information present in the KB for the entities in question.
For example, for the query (foundingAgent
AbuSayyafGroup ?X), the system constructs 40 different
strings, including:

Sample search strings for
 (foundingDate AbuSayyafGroup ?X)

Abu Sayyaf was founded in ____
Al Harakat Islamiya, established in ____
ASG was established on ____

 The search strings are constructed using the same
infrastructure (both representation and code) that is used
ubiquitously in Cyc for constructing English
representations of CycL assertions. For several reasons,
however, we chose not to use the standard generation
templates. The first reason is that much of the target
information in the corpus is not typically stated as a
simple fact, but rather as a qualification or addendum to
some other fact, while Cyc generation templates are
generally designed to express the single facts as
sentences. Thus, for founders, Cyc ordinarily generates
“Abu Sayyaf was founded in 1991”. Using Cyc’s
standard English generation for these facts would miss
many of the common patterns, such as “Abu Sayyaf,
established in 1991, …”. Second, because Cyc typically
has been optimized to convey all the details of logical
representations, English generation can be quite stilted,
and therefore be unlikely to be matched in a corpus.
 In order to find answers for the queries, the system
strips blanks and submits the result as a quoted string to
the search engine (e.g. “Abu Sayyaf was founded in”).
Upon receiving the results from the search engine, the
system downloads the documents and searches through
them for sentences that contain the search string.
 To produce a candidate assertion, the system looks at
the portion of the sentence where the blanks would have
been. The system then attempts to interpret that string as
something that meets the constraints set forth by the
predicate. In this case, foundingDate requires that its
second argument be a Date. Accordingly, the system
attempts to interpret the selected string as a date,
expanding the size of the window until it finds a date or
reaches a pre-determined maximum length. For example,
“the early 1990s” parses to (EarlyPartFn (DecadeFn
199)), while “1991” parses to (YearFn 1991).

3.2. Fact Verification
Before actually asserting anything into the Knowledge
Base, the system attempts to verify the ‘facts’. The
system uses several different methods for verification.
The first involves a KB consistency check. For example,
the system can reject ‘facts’ because there can only be
one possible answer, and the answer is already known.
For this reason, the system would reject an assertion that
Dallas, TX is the capital of the U.S., since Cyc already
knows that Washington, DC is the capital. Previous

work by Cycorp suggests that a one-step inference is
generally enough to find contradictions (Panton, et al.
2002). When a fact is already known, the system ceases
verification. In the future this procedure will add
redundant justifications to already-known facts so that
the system will know that there are multiple sources that
all convey the same fact.
 The first verification mode serves to weed out
information that is known to trivially conflict with the
Cyc KB, but there are large amounts of information that
would be consistent with the Cyc KB, but still wrong.
For instance, the sentence (foundingAgent
AbuSayyafGroup EdBuckham) doesn’t obviously
contradict anything in the Cyc KB, but is nevertheless
false. To rule out such answers, the system performs an
additional verification step by rerunning the search with
the string generated for the complete fact. In cases where
the search string uses an abbreviation or acronym, an
additional disambiguation string is added: the least
common word in the expanded acronym, based on
Google hits. In this case, “Sayyaf” was be added to
“ASG was founded by”, thereby eliminating documents
that used ASG to refer to “Alexander Strategy Group”,
which was in fact founded by Ed Buckham.

Once additional facts have been found by the system,
analysts will be able to view those facts in the Fact Sheet,
along with the sources for them. While we would like to
claim that it will only produce true facts, that is not the
case. Luckily, this is not an insurmountable problem;
recall that the system-gathered facts will be viewed using
an interface that is also used for manual knowledge entry.
This will allow users to view the provenance of the
assertions and remove those that are false. For example,
when gathering facts about countries, the system came up
with the following ‘fact’:

(sellsProductType Germany
 (SubcollectionOfWithRelationFromFn Soul-Spiritual
 possessiveRelation
 (PronounFn ThirdPerson-NLAttr Singular-NLAttr
 Neuter-NLAttr PossessivePronoun-Pre)))
“Germany sells its soul”

Obviously, despite its verbatim appearance in the corpus,
this is not the sort of ‘fact’ that would withstand scrutiny,
and an analyst could easily mark this fact as false,
thereby removing it and ensuring that it doesn’t reappear.

4. Result Analysis
For the work reported here, we limited the system to
looking at no more than the first 20 hits for any search
string. This was done in large part because of limitations
on the number of permitted queries against the Google
API.

One restriction in the current system is that, except for
dates, it will only return answers that are already reified
concepts in the Cyc KB. This has the effect of drastically
limiting the possible results for some types of queries.
For example, Cyc only knows a relatively small number

of companies. As such the system will reject the
employers for the vast majority of people.

In a test of twelve US presidents chosen randomly
(famous people were chosen because we were fairly
certain that relevant data would be available on the web),
the system was able to correctly determine the date of
death for seven of them, was only able to find dates
without years for three more, and failed to find any
death-dates for the remaining two. For birth dates, the
system found the correct answer for ten, found no answer
for one, and found only a date without a year for one.

There were several errors in this task, including a
death date for Franklin Pierce of October 8, 1809 in
addition to his actual death on October 8, 1869. This is a
result of the garbage-in garbage-out principle—one web
page erroneously stated that Pierce died in 1809. One
solution to this problem lies in weighting the answers
according to the number of times each answer was found.
Even though the system looked at fewer than twenty
pages, it found three that included the correct death date,
and just one with the incorrect date. A search through
more documents would doubtless reveal that many more
documents state that he died in 1869.

We expected ambiguity to be a serious problem, but it
turned out to be less of a problem than we expected. The
system found an incorrect death date for only one of the
presidents because of a naming ambiguity (Benjamin
Harrison, who died in 1901, was also alleged to have
died in 1925). The nature of the search results that
Google returns, along with the fact that we tested the
system using famous people, probably reduced ambiguity
by biasing the system towards only seeing results that
were for the presidents.

The system also spent substantial time looking for
information that turned out to be very difficult to find in
texts. For example, for all people, the system attempts to
find out what languages the person speaks, what areas
they were educated in, who they work for, what their
email address is, and a variety of other things that proved
difficult to find. Although the corpus and type of entities
searched for were helpful in reducing ambiguity, we
believe that they worked against the system when trying
to find these types of information. Language spoken, for
example, is not commonly discussed for US presidents in
the English documents that Google returned.

Table 1 shows results for 24 FamousHumans,
including the 12 presidents just discussed. A sentence
was judged plausible if it was a reasonable reflection of
the content of the document, and implausible if it
conveyed content not clearly in the document. Many of
the sentences found were already known by Cyc, but
even more were novel, and the number of sentences
asserted when they should not have been was relatively
low (only 27% of the total unique sentences the system
considered). Even though the system typically only
looked through 10-20 documents for each fact
(predicate/person pair), a substantial number of
duplicates were encountered.

 Unique Sentences Total
Plausible 96 161
 Already Known 30 79
 Novel 66 82
Implausible 41 67
 Provably Incorrect 4 9
 Wrongly Asserted 37 58
% incorrectly asserted 27%

(37/137)
25%

(58/228)
Table 1: Results of fact-finding for information about 17
predicates and 24 arbitrarily chosen instances of
FamousHuman.

Several types of information that we initially tried to
gather using specific search strings turned out to be
poorly suited to this mechanism, but are well suited to
other methods, including the entity typing methods
discussed earlier. For example, to find the ethnicity of
Abdulrajik Janiani, the system searches for strings
including “____ leader Abdurajak Janjalani”, which
yields 19 documents, none of which yield an ethnicity
using this technique.2 On the other hand, using the
entity-typing methods, the search string would be just
“Abdurajak Janjalani”, the 18th document contains an
appositive description of Janjalani as “a Philippine
Muslim”, which would be enough for the system to
determine not only his ethnicity but also his religion.

The system also searched for marital status, attempting
to find a term that would map directly to Married or
Divorced. While this technique might work well for
Divorced, there are much better tips that a person is
married. In particular, any mention of “X’s wife” or
“X’s husband” is sufficient to determine that X is
married, regardless of whether the spouse is mentioned
by name. Clearly, a technique capable of using these
types of cues would yield better results.

In an initial experiment to gauge the promise of the
system, 17 instances of FamousHuman (different from
those used for fact-finding above) were run through the
system. The NERs produced incorrect types for two of
the 17. The system found more detailed type information
for nine of the 17. Accurate information was found for
all nine, although two of the nine also yielded incorrect
information (e.g. a prime minister was understood to be a
secretary-general).

Analysis of the work done by the entity-typing system
also turned up several interesting issues. Because the
system uses multiple sentences mentioning the same
entity, the NERs produced conflicting types for two of
the 17 entities. This is clearly undesirable, and a simple
voting scheme should be more than sufficient to deal
with this problem. In both of these cases, there was one
false typing and numerous correct typings for the entity.

2 This search does, however, yield many hits that contain the
information that he is the leader of Abu Sayyaf.

Another issue arises with entities that change type over
time. For example, for political figures it is quite
common that they will, over the course of their career,
hold several different positions. The system typed
Shimon Peres as a prime minister, deputy prime minister,
and foreign minister. By asserting these facts into
contexts that are agnostic about time, it is possible to
assert that Shimon Peres is all of these things, and this is
sufficient for many uses of this information.

5. Future Work & Conclusion
 Looking forward, we would like to extend this system
in a number of ways. In terms of the Fact Sheet user
interface, we already have the ability for users to modify
the knowledge about the entities, but do not yet have the
ability for analysts to modify the format of the Fact
Sheets. Future interface work will focus on allowing
analysts to manipulate the order and type of fields in Fact
Sheets, adding additional modalities to the Fact Sheets
(e.g. pictures), and dynamic updating of Fact Sheets, with
notification when new information is found about an
entity.
 On the fact-gathering side, we are planning several
extensions. One extension is the ability to gather facts
from documents in Chinese, and display the results (in
English) as part of a Fact Sheet. Initially, we will do this
by exploiting existing Chinese-English lexica, combined
with our existing English-CycL lexicon to produce a
prototype Chinese-CycL lexicon. With the additional
semantic constraints that we will bring to bear from the
logical representation in the Cyc KB, we believe that we
will have a reasonable chance of achieving a measurable
level of success using this simple method, though we
expect to get substantially poorer results than we get with
English texts.
 As mentioned earlier, the system currently accepts
only known entities as possible fillers. In an intelligence
analysis domain where discovering new players is
important, this is clearly too strong a condition for
acceptance. Instead, we will run the process described
here recursively. Once a possible entity has been
identified, the system will attempt to determine the type
of that possible entity. If a type can be determined that is
consistent with the requirements of the field it will fill,
we will create a record for that entity and allow its use
henceforth.
 It is worth noting that entities in the Cyc KB can have
multiple names (or aliases) associated with them. For
example, if the system has three different entities named
“Abdul”, it is not obvious which of them a particular
extracted fact should be associated with. In future
versions, we will allow facts that might map to several
entities to be asserted for all of the possible entities,
along with an assertion stating that this fact is really only
true of one of the entities. If any of these facts is ever
used in a justification, the analyst will be alerted and
encouraged to look at the source document to confirm or
deny that the fact is asserted on the correct entity.

In an effort to get information that cannot be easily
gathered using the string-based fact-gathering system, we
also hope to include more of the information that we can
gather with our existing sentence-level parsers. See
below for an example parse of a sentence retrieved from
Google for Abu Sayyaf:

Correct semantic parse for
“In May 2001, Abu Sayyaf kidnapped 20 people,
including three Americans”

 (thereExistAtLeast 20 ?PEOPLE18
 (and
 (isa ?PEOPLE18 Person)
 (thereExists ?KIDNAPPED7
 (and
 (agentCaptured ?KIDNAPPED7 ?PEOPLE18)
 (isa ?KIDNAPPED7 KidnappingSomeone)
 (perpetrator ?KIDNAPPED7 AbuSayyafGroup)
 (in-UnderspecifiedContainer ?KIDNAPPED7
 (MonthFn May (YearFn 2001)))))))
“20 people were kidnapped (in at least one
kidnapping) in May 2001 by Abu Sayyaf.”

Once facts like these have been gathered, the users will
be able to expand upon the knowledge automatically
gathered to include other information present in the
sources that the system was unable to understand.

A natural extension to the fact gathering system
described here is the integration of an existing relational
information extraction system. While relational IE
systems do not attempt to provide answers to all the
different types of facts that our system looks for, they
typically do a good job at finding some of these types of
information, and we are actively looking for
opportunities to integrate with such systems. The
additional semantic interpretation that this system
performs has the ability to eliminate some of the false
positives that IE systems typically generate. Similarly,
the Fact Sheet interface will allow users to provide
additional information (e.g. other names for an entity)
that can be used to merge some of the entities found by
IE systems, resulting in better information than either
type of system could achieve on its own.

One open question is how well this system will
function with a different corpus, such as that which might
be found in a classified environment. We do not believe
that different methods of accessing the corpus (e.g. not
being able to rely on page-rank to order the documents)
will substantially hinder the system. In fact, because
news articles tend to be very infrequent in Google’s top
results, working on a system without page rank may
result in better results, as news articles tend to be packed
with the sorts of information that our system gathers
fairly well. Future tests of the system will include
looking at news corpora in addition to the information
returned by standard web-search engines.

We believe that this system shows substantial promise
as a tool that analysts can use to gather, store, and
arrange information. Because all the information is

stored in a formal representation, others can readily reuse
it, and any updates to that information that an analyst
decides to make will be automatically disseminated to
other users. The fact-gathering ability of the system,
already substantial, will only increase as more methods
are implemented and existing methods are extended and
refined. Preliminary results reported elsewhere
(Matuszek, et al., submitted) indicate that the verification
steps described here can reduce the number of false
positives by nearly 90%.

6. Acknowledgements
Production of this paper was supported by ARDA’s
AQUAINT program.

References
Charniak, E. 2001. A Maximum-Entropy-Inspired
Parser. In Proceedings of the 1st Conference of the North
American chapter of the Association for Computational
Linguistics. Seattle, Washington, 132-139.

Deaton, C, B. Shepard, C. Klein, C. Mayans, B.
Summers, A. Brusseau, M. Witbrock, D. Lenat. 2005.
The Comprehensive Terrorism Knowledge Base in Cyc.
Poster presented at 2005 International Conference on
Intelligence Analysis.

Klein, D, J. Smarr, H Nguyen, C. Manning. 2003. Named
Entity Recognition with Character-Level models.
Proceeedings of the Seventh Conference on Natural
Language Learning, 180-183.

Masters, James and Z. Güngördü. 2003. Structured
Knowledge Source Integration: A Progress Report. In
Integration of Knowledge Intensive Multiagent Systems,
Cambridge, Massachusetts, USA, 2003.

Matuszek, C., M. Witbrock, R. Kahlert, J. Cabral, D.
Schneider, P. Shah, D. Lenat. 2005 Searching for
Common Sense: Populating Cyc from the Web.
Submitted to IJCAI 2005.

Panton, K., P. Miraglia, N. Salay, R. Kahlert, D. Baxter,
and R. Reagan. 2002. Knowledge Formation and
Dialogue Using the KRAKEN Toolset. In Proceedings of
the 18th International Joint Conference on Artificial
Intelligence. Edmonton, Canada, 900-905.

Prager, J., E. Brown, A. Coden, D. Radev. 2000 Question
Answering by Predictive Annotation. In Proceedings of
the 23rd SIGIR Conference, 184-191.

Sleator, D. and D. Temperly. 1993. Parsing English with
a Link grammar. Third International Workshop on
Parsing Technologies. August 10-13, 1993, Tilburg,
Germany.

