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Abstract— Modern robotics heavily relies on machine learn-
ing and has a growing need for training data. Advances and
commercialization of virtual reality (VR) present an opportu-
nity to use VR as a tool to gather such data for human-robot
interactions. We present the Robot Interaction in VR simulator,
which allows human participants to interact with simulated
robots and environments in real-time. We are particularly
interested in spoken interactions between the human and robot,
which can be combined with the robot’s sensory data for
language grounding. To demonstrate the utility of the simulator,
we describe a study which investigates whether a user’s head
pose can serve as a proxy for gaze in a VR object selection task.
Participants were asked to describe a series of known objects,
providing approximate labels for the focus of attention. We
demonstrate that using a concept of gaze derived from head
pose can be used to effectively narrow the set of objects that are
the target of participants’ attention and linguistic descriptions.

I. INTRODUCTION

Preparing robots for human environments requires training
on realistic data. In this paper, we present RIVR (Robot Inter-
action in Virtual Reality), a simulator that allows acquiring
a training corpus of human-robot interactions. Our system
allows for a robot and its sensors to be represented in a scene
where they interact with a human avatar animated by the
actions of a human using a commodity virtual reality system.
Our goal is to enable simulation which includes real-time
human-robot interaction and captures realistic output from
the virtual robot’s simulated sensors of the VR environment.
The human participant is represented using an avatar and
rigged to the VR controllers and headset using inverse
kinematics. This is a new direction relative to prior work,
which does not include a human in the scene [1].

Machine learning is commonly used as a method of
training robots, but it requires large amounts of data to
properly weight neural connections between the machine
learning model’s layers [2]. Our previous work has focused
on teaching robots about their environments by having hu-
mans describe objects with natural language [3]. Collecting
human-robot interaction data to train these models can take
significant time. One method for optimizing data collection
in robotic learning is to perform learning in simulation,
which increases the radius of possible participants, min-
imizes travel, and reduces machine maintenance. Models
trained in simulation can then be transferred to physical
robots and further trained. While this simulation-to-reality,
or sim2real, pipeline has been widely explored, the majority
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of sim2real work in human-robot interaction has focused on
the human side, e.g., training people to use robot systems [4],
[5] or exploring human comfort levels with different scenar-
ios [6]–[8]. In this work we focus on robot learning from
interactions with people in a simulated environment.

Meanwhile, in the context of robots learning from human
language, gathering unconstrained human descriptions of
objects in the environment requires significant effort to
properly align the descriptions to the visual percepts of the
specific objects being described. To allow for more self-
supervised interactions, we investigate whether we can use
attributes of the interaction to label the data points as they are
collected. Particularly, we evaluate the RIVR HRI simulation
by investigating whether a VR participant’s head pose can
serve as a proxy for gaze to label objects as they are
described. We consider head pose as it is commonly available
in all commodity VR hardware, as opposed to using eye
tracking, which only some platforms support.

In our experiments, we collect data from participants who
are describing objects and tasks in a virtual environment
(fig. 2), with the goal of using head pose to determine what
objects are being described at each time step. Head pose
was determined from the position and orientation of the
headset, and from that the object that most closely matched
the direction of gaze is calculated. We evaluate two different
approaches: a baseline, where the target object is selected to
minimize the angular distance from an object position to the
participant’s gaze direction; and the approach introduced in
BayesGaze [9], which utilizes Bayesian inference.

The contributions of our work are threefold. First, we
present a system that integrates a VR environment with
a realistic, controllable virtual robot platform. This system
was developed with language-based human-robot learning in
mind, with the specific goal of gathering robotic sensor data
in a setting with sufficient realism and immersion to allow for
natural human speech and behavior. Second, it brings virtual
reality into an application area where it may potentially
support a new class of research studies in human-robot
interaction. This includes offering a platform that supports
fast, safe, and inexpensive research in robotics, a field that
traditionally has a significant barrier to entry. Third, we
present an evaluation of the use of head pose as a proxy
for gaze to allow for data labeling.

II. RELATED WORK

Robots deployed in dynamic human settings will need
to contend with a wide range of environments and tasks.
One approach to addressing this is to allow end users to



teach and instruct their robots using grounded language—
natural language about the physical setting. In robotics, this
has generally involved combining sensor data with human
language [10]–[14], and sometimes gesture and other modal-
ities [15]–[17], to create a joint model of what language
refers to in the robot’s frame of reference. However, this
process requires extensive training data. Relying on pre-
trained models can reduce this training load but not eliminate
it, given the perceptual variations of different environments
and the idiosyncrasy of language.

The goal of this work is to improve our ability to gather
data in different settings and from different groups. We
approach this by creating VR scenarios, in which a person
can teach a robot about objects while simulated perceptual
data is collected along with language and gesture. This
learned model can then be brought to a physical robot, where
training can be completed—the “sim2real transfer” approach.
We utilize the Unity game engine to build our simulated
environments and use ROS# [18] to link it with ROS [19] and
Gazebo, allowing the same software and message-passing to
be used on the virtual robot and its physical analog.

Simulation has been a valuable tool in robotic re-
search [20]–[22], including in teaching robots about their
environments using natural language [23]–[27]. However,
these environments typically do not provide the embodied
interaction between robot and human that HRI often requires.
Similar to [6], [28], [29], we are leveraging the Unity
game engine’s powerful animation and interaction tools to
facilitate the development of complex HRI studies. Virtual
reality, meanwhile, allows for a user to be fully immersed
in an environment and has shown promise when used as
a tool to provide training demonstrations, for example in
learning grasping policies [30]–[32]. Human communication
consists of more than just spoken language, and includes
modalities such as gaze and gesture, which provide useful
information for grounding [33]. Motion tracked VR headsets
and controllers allow RIVR to capture of these modalities.

Robots that have a method to express gaze are perceived
more favorably and perform better during interactions with
humans [34]–[36]. It has also been shown to be a useful tool
to measure a person’s engagement [37] during an interaction
and as a measure of the person’s perception of the robot [38].
Gaze has been used as a tool to improve robotic manipulation
and handoff tasks, where gaze provides insight to the human
participant’s intent [39], [40]. It has also been used to estab-
lish and maintain a common ground during interactions [41],
[42]. The performance of eye tracking in VR has been
compared to eye tracking in the real world under ideal
circumstances [43]. The accuracy did not differ when gazing
as static targets, and only showed small differences at targets
at varied distances, but did show larger differences when
tracking moving targets, and showed that the precision in
VR was much worse when focusing on static targets. This
work only investigated the performance of eye tracking with
the head in a fixed position.

Work has shown that head pose can be used as a method
of control for user interfaces in both virtual [44] and aug-

mented [45] reality. There has been work that has shown
that head pose by itself cannot replace eye gaze [46],
[47], since a person generally will not move their head
to focus on objects that are close together, instead relying
on eye movements [48]. However, as not all VR headsets
support eye tracking, and as gaze tracking in human-robot
interactions is not always viable, we hope to compare how
well head pose works as a proxy for gaze in VR on the
specific task of object selection when a person is teaching
a robot. The use of bidirectional gaze in interactions with a
virtual agent can improve task performance, and it has been
shown that using head pose as a proxy for gaze in a system
utilizing bidirectional gaze performs similarly to using full
eye tracking [49].

III. APPROACH

To enable the remote collection of data, our simulator
design uses a distributed approach. The researcher, test
participant, and control server are all at different locations.
This makes the system particularly sensitive to home internet
connections of the simulation users. High latency, low band-
width, and random packet loss are more likely than when
similar experiments are performed in a lab. To mitigate this,
the simulation is split between the client and a render server,
lowering the bandwidth and processing power requirements
for the client by offloading them to the render server, which
can be run with a reliable high-speed connection to a server
running ROS. All that is required is a VR headset and a
laptop that can run the simulation.

As we hope to be able to use RIVR to collect the large
amount of data required to train grounded language models,
we seek to minimize the amount of annotation and data
labeling that is required, matching descriptions to objects
or places. Head pose is a potential tool that may be able to
provide these annotations during the data collection process.

A. System Components

Fig. 1: A diagram showing the major software components
of the system and their connections. The control server
manages the running simulation, and hosts web-based and
a VR simulator client; the ROS server launches a rosbridge
client and manages interaction with the simulated robot and
sensors; and the render servers model the simulated sensor
data from which the robot learns.



The system is implemented as a set of independent compo-
nents that connect to each other over the Internet as shown in
Fig. 1. This design allows researchers and test participants
to run portions of the simulation locally, thereby avoiding
round-trip latency affecting their local display. This trade-off
requires greater network bandwidth between the participant
and the researcher, but significantly reduces the computa-
tional requirements for the participant’s local system.

Fig. 2: A screenshot of the Wizard-of-Oz interface.

1) Control Server: The Control Server is used by the rest
of the system components to track current simulation status,
as well starting and stopping the server-side processes needed
to run a simulation. The control server has a web front-
end that allows customization of simulation runs. It also
hosts a second web application that implements a web-based
simulator client that supports robot teleoperation (see Fig. 2
for an example). Scripted tasks can be triggered through the
use of buttons and keyboard shortcuts in the web interface,
and data can be streamed live from the participant’s virtual
reality client to the web client.

2) ROS Server: ROS is installed on a server along with a
control client. The control client loads simulation parameters
from the control server and acts as a launcher for ROS.
The ROS server launches an instance of rosbridge to allow
clients to connect to the simulator over the network, and
records simulation results to a rosbag file. When multiple
simultaneous simulations are run, each simulation requires
its own ROS server instance, with each instance running a
separate websocket on a different port.

3) Virtual Reality Client: The virtual reality client runs on
the participant’s system. It renders the virtual reality environ-
ment to the participant’s headset and captures the microphone
audio from the headset. In order to minimize latency when
objects in the scene are manipulated by the test participant,
the simulator is also responsible for calculating the physics
of loose objects in the scene, whether manipulated by the
robot or the test participant. By calculating the motion of
these objects on the participant’s computer, we avoid an

unnecessary round-trip over the network and the motion is
much smoother. The state of the robot is streamed into this
client simulator over the rosbridge websocket and visualized
using a model of the robot imported into the scene using the
ROS# Unified Robot Description Format (URDF) importer
tool. The scene state including the pose of all the objects,
the robot and user are all sent over the same websocket to
the render server described in the next section.

4) Render Server: Certain sensors may be better modelled
by the Unity game engine than by the Gazebo simulator,
such as depth cameras. Unity also provides high quality
shaders that are better able to model real-world materials
than are readily available in Gazebo. However, when the
simulated robot has a large number of sensors to simulate, the
computational expense may become too great for the client’s
system to run while rendering to VR. Thus, we support using
multiple instances of the Unity simulator as remote render
servers, each responsible for a subset of the sensors in the
scene, freeing the client instance to only render frames to the
headset. The render servers generate camera views and depth
sensor results that are transmitted over the ROS websocket
in real-time to the other ROS nodes.

B. Simulation Components

The Unity simulation has two main components: (1) the
environment, in which the human user and robot interact;
and (2) the robot’s exteroceptive sensors.

1) Environments: One of the key values of using Unity
as the rendering engine for virtual reality (as opposed to
Gazebo or other robotics-focused tools) is the ability to create
and modify scenes easily. In the process of developing the
simulator and this initial user study, we developed three
different environments. Some assets were acquired from
the Unity asset store, while others were generated from
URDF files to model the robot. As shown in the pilot study
presented here, we are able to load arbitrary Unity scenes,
such as the kitchen scene from the AI2Thor project [23].

2) Human Avatars: One of the goals of this work was
to have a model of one or more human participants in
the scene with the simulated robot. There are a number
of common sensors that robots may use to interact with
a human: microphones may capture speech, cameras may
capture gesture information, and depth sensors may capture
body pose. We designed a system to record human per-
formance and generate sample sensor inputs based on this
recording without committing to a particular sensor selection
or arrangement at the time of recording. While our current
approach to motion capture is limited to the tracked points
available to an off-the-shelf commercial headset, we are able
to run a number of experiments with the current design.

We take advantage of MakeHuman [50], a freely available
software package that can be used to build a diverse set of
fully rigged human avatars that can be imported into Unity
for use in the simulator. This avatar is animated from the
poses of the headset and controllers using the Final IK Unity
package [51] to give the robot a realistic view of the human.



3) Sensors: By using the Unity game engine and Gazebo
in parallel, we have the choice to implement each sensor
in either engine. We have chosen to implement sensors that
interact with the world using Gazebo, and sensors that inter-
act with the test participant using Unity. The sensors include
an RGB+D camera capturing visual information of objects
and human gestures in the scene, a microphone for capturing
raw speech audio, and various robotic platform sensors. Our
sample experiment uses a Husky robotics platform with a
custom structure supporting a Kinova Jaco arm. The joint
encoders in both the Husky robot’s wheels and the joints
of the Jaco arm are modelled using manufacturer-provided
models in Gazebo. The Husky’s Kinect RGB+D camera is
modeled in Unity. As sensor outputs from both systems are
made available over ROS topics, the robot’s actions are fully
decoupled from the simulator and able to support either
source of data. This allows the same software used to control
a physical robot to run the simulated hardware.

IV. GAZE EXPERIMENTS

In order to evaluate the design and capability of our
system, we investigated the use of head pose as a source of
labels for linking the natural language descriptions of objects
to the robots’ visual perception of them.

A. Data Collection

Fig. 3: The robot’s perspective when prompting the user for
a description of the bread. The gaze direction (not visible
to participants) is overlaid on the image from the virtual
reality headset’s tracking to demonstrate the gaze-to-object
proximity from the robot’s sensors.

Participants were brought into a lab, and the simulation
was explained. Users were told how the robot would prompt
a response by asking for a description of objects. They were
instructed to respond as though they were describing objects
to someone that had never seen them before. Each participant
went through the interaction once and was asked to describe
the same six objects, out of a total of ten objects located on
a kitchen island. All the objects were in the same locations

for each participant. People described objects in a variety of
ways, including physical attributes, ideal usages, and origins.
There were fifteen participants in the study between the ages
of 21 and 36, with a mean age of 25. Nine were male,
six were female and one did not respond. Eight identified
as Asian and seven as white. After hearing the instructions
with an opportunity for questions, participants were given
the virtual reality headset and taught how to adjust it.

After a familiarization period with the headset, the user
was given two controllers. The right controller’s trigger was
used to signal the start and stop a data collection instance.
The data collected on head pose was recorded by Unity
and transformed into the robot’s frame of reference in ROS.
The objects described by the user were captured as point
cloud data from a simulated Kinect. The point clouds were
segmented and clustered in order to detect where objects
on the kitchen countertop were positioned. Following the
final description, the users were thanked by the robot and
then filled out a post-study survey. Anecdotally, users felt
that the simulator provided a fairly realistic environment,
but that some objects were more realistically rendered than
others; occasional difficulties with the VR display (e.g.,
blurry vision) were also reported.

B. Gaze Calculation

During experiments the entire interaction was captured in
ROS, including the audio from the user, simulated RGB
and depth from the robot’s perspective, point clouds, the
position and orientation of all the interactive objects in the
scene, and all the ROS transform messages. The point clouds
were segmented to get point clouds for each object on the
table that the robot can see. The position and orientation
of all interactive objects and headset were captured in the
Unity coordinate system. The origin of the odometry frame
of the robot in ROS matches the origin of the global
coordinate system in Unity, but Unity uses the z axis as
forward/backward, x as left/right and y as up/down. A ROS
message was published that contains the raw audio that
was recorded while the user is describing objects. In a few
cases, the participants did not realize they should provide
descriptions for the object the robot was indicating; in these
cases, the audio recording was used to manually annotate
which object they were describing.

1) Baseline: For a baseline we assumed that the target
of the gaze was the object that had the lowest angular
distance between vectors from the head position along the
gaze direction and the vector from the head to the object.
Once the head pose was in the same frame of reference as
the point clouds, the position and orientation of the headset
was used to determine the gaze direction by using a point
one meter in front of the headset position in the direction it
is facing. The vector defined by these two points is assumed
to be the gaze vector. Each point in the point cloud was
assigned a label by checking for the closest Unity object.
The cosine similarity between the gaze vector and the vector
between the head and the object was computed. Figure 5
shows this distance for each object on the countertop. The



(a) Baseline

(b) BayesGaze

Fig. 4: For each object described by the user, the solid blue block indicates the ground truth of what is being described,
starting at the timestamp when the user began their description of the object. Concurrent with the blue blocks are various
colors, signifying the objects in which the user was looking as observed by head pose tracking. The breaks in the colors
show how the user in this instance was looking from object to object even while describing a single object. The y-axis is
the objects that are being described, and the x-axis is time. This graph does not include ‘distraction’ objects not described
by participants, which included a water bottle, drill, hammer, and first aid kit.

Fig. 5: The distance of the calculated gaze from each object over time, measured as cosine distance between the head pose
vector and the vector between the participant’s head and the objects. Different colors represent different objects; when the
gaze coincides with an object, the distance drops to zero.

object containing the point with the smallest distance was
considered to be what the participant was labeling. Figure 4
shows the ground truth of the object the robot is indicating
(blue bars) versus the object which the gaze vector intersects
(other colors) for both approaches.

2) BayesGaze: We compared this simple baseline with
the BayesGaze [9] approach, originally implemented for
eye tracking and targets on a 2D display. BayesGaze is an
improvement on dwell-based target selection method where

each target candidate accumulates “time” or “interest” from
the gaze until a potential target reaches a threshold θ . It
uses Bayesian inference where the prior uses a Dirichlet
distribution and a Gaussian density function to determine
the probability of observing a gaze given a certain target.
The distance measure used was the L2 Euclidean norm of
the distance between an object and the closest point on the
gaze ray. In this work we focus on a 3D environment, so
instead a cosine distance measure between the gaze vector



and the head–object vector was used. For this approach, the
centroid of each of the objects was used as their position.

This approach relies on the parameters k, the pseudocount
of the Dirichlet prior; σ , which is the variance of the
Gaussian density function; and θ , the target threshold. k was
set to 1, and the parameters theta and sigma were determined
using a grid search where σ ranges from 0.01 to 0.10 by
steps of 0.01 radians, and θ ranges from 0.05 seconds to
1.00 seconds by steps of 0.05 seconds. This method was run
over the data from all fifteen participants and values of σ

and θ were empirically chosen (σ = 0.8, θ = 0.4).

C. Results

TABLE I: Top 1, 2, 3 and MRR results for all participants

Participant Top 1 Top 2 Top 3 MRR

1 0.54 0.83 0.88 0.73
2 0.32 0.57 0.60 0.55
3 0.64 0.86 0.89 0.78
4 0.73 0.87 0.91 0.83
5 0.72 0.87 0.99 0.84
6 0.43 0.82 0.96 0.68
7 0.50 0.76 0.92 0.70
8 0.53 0.73 0.87 0.70
9 0.58 0.85 0.92 0.76
10 0.35 0.68 0.74 0.59
11 0.50 0.64 0.85 0.67
12 0.52 0.77 0.85 0.71
13 0.52 0.78 0.83 0.70
14 0.43 0.65 0.80 0.63
15 0.58 0.84 0.98 0.76
Mean 0.51±0.12 0.76±0.09 0.86±0.09 0.70±0.08

(a) Baseline
Participant Top 1 Top 2 Top 3 MRR

1 0.78 0.86 0.88 0.85
2 0.34 0.51 0.58 0.53
3 0.56 0.83 0.92 0.74
4 0.65 0.77 0.87 0.77
5 0.57 0.83 0.98 0.75
6 0.74 0.78 0.91 0.83
7 0.63 0.66 0.77 0.73
8 0.64 0.72 0.76 0.75
9 0.83 0.86 0.96 0.89
10 0.40 0.49 0.68 0.57
11 0.62 0.75 0.84 0.75
12 0.69 0.70 0.82 0.78
13 0.58 0.69 0.81 0.72
14 0.52 0.58 0.68 0.65
15 0.78 0.87 0.97 0.86
Mean 0.61±0.14 0.72±0.12 0.82±0.12 0.74±0.10

(b) BayesGaze

Top-N accuracy means one of the top N predictions match
the target, and the mean reciprocal rank MRR= 1

Q ∑
Q
i=1

1
ranki

.

In order to determine how accurately these approaches
identified the target object, we calculated the mean reciprocal
rank of the distance calculation. Here we predict the rank of
all objects based on their distance from the gaze vector, and
the interest for each object from the BayesGaze approach and
then the inverse rank of the desired objects in all queries are
averaged. For example, if the model predicts that the person
is looking at the correct object according to ground truth,

MRR = 1
1 = 1, a perfect score. This metric is suitable for

capturing the intuition that some incorrect predictions are
‘closer’ than others.

Table Ia and Table Ib show how often the correct object
was in the top 1, top 2, top 3, and the mean reciprocal
rank (MRR) for all the participants for both approaches.
For the baseline the mean percentage of time in which the
object was correctly identified (top 1) was 51%, top 3 was
86%, and the mean MRR was 0.70, and for BayesGaze
the mean percentage of time in which the object was cor-
rectly identified (top 1) was 61%, top 3 was 82%, and the
mean MRR was 0.74. The BayesGaze approach performs
significantly better matching the target to the object being
described, at the expense of top 2 and 3 scores. As can be
seen in IIa and IIb, both approaches work better for larger
objects and objects that are not clustered tightly together,
with BayesGaze performing significantly better in top 1
accuracy, and slightly better overall.

These results are consistent with previous physical gaze-
tracking work, which show that looking at objects separated
by over 20◦ results in a viewer moving their head, while
when viewing objects closer together than 20◦, viewers move
their eyes while keeping their head steady [48]. This does
demonstrate that the approach described in this work is
faithful to the real-world gaze tracking we are attempting to
simulate. One of the confounding issues is the water bottle.
Since the body of the bottle is transparent, there is a tendency
to estimate that the user is looking through it to objects
behind it. (Our simulator does not produce depth points for
transparent objects, which is consistent with the real-world
behavior of the depth sensors we intend to transfer learned
models to; as a result, the point cloud of the water bottle
contains few points and consists of the cap.)

The results of the study are promising in that they show
the extraction of object labels in real time based on a
head-pose as a proxy for gaze is feasible. Anecdotally, we
discovered that participants looked at some objects more
often than others, likely accounted for by varying object size
and visibility; understanding this effect is one target of future
work. One hypothesis is that certain objects require more
visual or cognitive processing, e.g., based on the complexity
of the object in shape, origin, or usage. Another possibility is
the vibrancy of the colors in the objects that drive the vision
to the object as a matter of immediate interest and attention
captivation. Overall, while work remains, this approach to
simulating gaze tracking in simulation shows promise as
one of several modalities for human-robot interaction and
particularly object selection.

V. FUTURE DIRECTIONS

This work forms a framework for conducting human-
robot interaction experiments in multiple modalities of vir-
tual reality. Much of the future work will be in the form
of performing experiments using the simulator, rather than
working on the simulator itself. However, there are still
a number of interesting directions to explore which may
enable additional types of research. Having multiple users



TABLE II: Top 1, 2, 3 and MRR results for all objects

Object Top 1 Top 2 Top 3 MRR

Lettuce 0.98 0.99 0.99 0.99
Tomato 0.77 0.88 0.94 0.84
Bowl 0.60 0.85 0.92 0.75
Bread 0.44 0.96 0.98 0.71
Apple 0.30 0.77 0.98 0.60
Mug 0.002 0.06 0.33 0.12
Mean 0.51±0.35 0.75±0.35 0.86±0.26 0.67±0.30

(a) Baseline

Object Top 1 Top 2 Top 3 MRR

Lettuce 0.99 1.00 1.00 0.99
Bread 0.98 1.00 1.00 0.99
Bowl 0.80 0.92 0.99 0.88
Tomato 0.75 0.85 0.91 0.82
Apple 0.20 0.48 0.76 0.43
Mug 0.00 0.03 0.27 0.09
Mean 0.62±0.42 0.71±0.39 0.82±0.29 0.70±0.36

(b) BayesGaze

and multiple robots able to simultaneously interact with
each other could open another avenue for investigation. Our
system architecture supports multiple simultaneous users.

Going forward, we plan to extend language grounding
directly from speech, with the data collected from simulation
used as input to a language grounding model that can then
be evaluated both in simulation and again in the real world
with a physical robot. The results of these two evaluations
can be compared to investigate the effect of the sim2real gap.
Alongside this, we can also compare how the participants
perceived the interactions in both the simulated and real-
world environments to investigate the effect of virtual reality
on the interactions. Future studies will be inclusive of varied
populations, such that each will have a representation in the
robot’s learning. A well represented population is made more
possible through the simulation, as participants will not have
to physically be in the lab. The nature of these interactions
will still allow participants to interact with objects in the
scenes through the controllers as other participants do in the
physical interactions.

VI. CONCLUSIONS

Having developed a system to model human robot inter-
actions which combines virtual reality with existing robotics
technologies and validating it by performing a small user
study, we demonstrate the immediate utility of this frame-
work and show the potential of using similar systems to
generate training data. Further, the application of head pose
as a proxy for object attention as described in the study
has the ability to speed of the annotation of data, speeding
transition time from data collection to model training. Both
the simulated environment and data labeling together allow
for increasingly larger scale data collection operations to be
undertaken. By releasing this system, we hope to extend
the capabilities of the research community and enable new
avenues of inquiry with more flexible, extensible tooling that
runs on common hardware.
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E. André, “Exploring a model of gaze for grounding in multimodal
hri,” in Proceedings of the 16th International Conference on Multi-
modal Interaction, 2014, pp. 247–254.

[42] Y. Nakano, G. Reinstein, T. Stocky, and J. Cassell, “Towards a
model of face-to-face grounding,” in Proceedings of the 41st Annual
Meeting of the Association for Computational Linguistics. Sapporo,
Japan: Association for Computational Linguistics, Jul. 2003, pp.
553–561. [Online]. Available: https://aclanthology.org/P03-1070

[43] S. Pastel, C.-H. Chen, L. Martin, M. Naujoks, and K. Petri, “Compar-
ison of gaze accuracy and precision in real-world and virtual reality,”
Virtual Reality, vol. 25, 03 2021.

[44] C. George, D. Buschek, A. Ngao, and M. Khamis, “Gazeroomlock:
Using gaze and head-pose to improve the usability and observation
resistance of 3d passwords in virtual reality,” in Augmented Reality,
Virtual Reality, and Computer Graphics: 7th International Conference,
AVR 2020, Lecce, Italy, September 7–10, 2020, Proceedings, Part I.
Berlin, Heidelberg: Springer-Verlag, 2020, p. 61–81.

[45] A. Esteves, D. Verweij, L. Suraiya, R. Islam, Y. Lee, and I. Oakley,
“Smoothmoves: Smooth pursuits head movements for augmented
reality,” in Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology, ser. UIST ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 167–178.
[Online]. Available: https://doi.org/10.1145/3126594.3126616

[46] O. Palinko, F. Rea, G. Sandini, and A. Sciutti, “Robot reading human
gaze: Why eye tracking is better than head tracking for human-
robot collaboration,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016, pp. 5048–5054.

[47] J. Kennedy, P. Baxter, and T. Belpaeme, “Head pose estimation is
an inadequate replacement for eye gaze in child-robot interaction,”
in Proceedings of the Tenth Annual ACM/IEEE International
Conference on Human-Robot Interaction Extended Abstracts, ser.
HRI’15 Extended Abstracts. New York, NY, USA: Association
for Computing Machinery, 2015, p. 35–36. [Online]. Available:
https://doi.org/10.1145/2701973.2701988

[48] S. O. Ba and J.-M. Odobez, “Recognizing visual focus of attention
from head pose in natural meetings,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 1, pp. 16–33,
2009.

[49] S. Andrist, M. Gleicher, and B. Mutlu, “Looking coordinated:
Bidirectional gaze mechanisms for collaborative interaction with
virtual characters,” in Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 2571–2582.
[Online]. Available: https://doi.org/10.1145/3025453.3026033

[50] MakeHuman Community, “Makehuman.” [Online]. Available:
http://http://www.makehumancommunity.org/

[51] RootMotion, “Final IK.” [Online]. Available: http://www.root-
motion.com/final-ik.html


