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Abstract— Learning the meaning of grounded language—
language that references a robot’s physical environment and
perceptual data—is an important and increasingly widely stud-
ied problem in robotics and human-robot interaction. However,
with a few exceptions, research in robotics has focused on
learning groundings for a single natural language pertaining
to rich perceptual data. We present experiments on taking
an existing natural language grounding system designed for
English and applying it to a novel multilingual corpus of
descriptions of objects paired with RGB-D perceptual data.
We demonstrate that this specific approach transfers well to
different languages, but also present possible design constraints
to consider for grounded language learning systems intended
for robots that will function in a variety of linguistic settings.

I. INTRODUCTION

As robots become less expensive, and more capable, it
is becoming possible to imagine them being deployed in a
variety of human-centric settings such as homes, schools,
or workplaces. However, as robots become more accessible,
it becomes more critical that they can be communicated
with and controlled by non-specialists. Robotic assistants
could be extremely helpful for a variety of people such as
the elderly or the disabled, so for maximal accessibility it
would be ideal to make the use of such robots as intuitive
as possible. Grounded language acquisition, in which robots
learn to understand language in the context of the sensed
physical world around them, is a major focus of research for
building robot systems that can interact and collaborate with
human partners in a natural way. At the same time, studying
language learning and interaction with a physically situated
agent offers a mechanism for advancing natural language
understanding [23], [12].

Although learning shared embeddings between sensor data
and language is a rich and varied field of research in robotics,
most of the work has focused on systems that operate on
only a single language, frequently English. In the natural
language processing community, there is work on building
multilingual systems, which learn from [10], [13] or can be
used with [34], [6] more than one language simultaneously.
In this work, we address a complementary problem: Can
systems that take advantage of physical percepts to learn
meanings in a particular language be deployed in a setting
where a different language is used?

In this work, we describe the application of an existing
grounded language learning system that uses the words-as-
classifiers model [21], [28], [24] to a novel corpus containing
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Fig. 1. An example of data collected for grounded language learning. Top:
Several images of an object in the dataset. Below: Descriptions of the object
in unconstrained English, Spanish, and Hindi (respectively).

two additional languages. We discuss methods of acquiring
suitable training data, the overall performance of the system
on English, Spanish, and Hindi, and some characteristics of a
grounded language process that should be considered when
linguistic flexibility is desired. In practice, such flexibility
should be considered highly desirable in order to avoid
limiting the benefits of ubiquitous, collaborative robots to
English-speaking settings.

The remainder of this work is organized as follows:
In Section III-A, we describe our novel trilingual dataset,
which is comprised of approximately 17,000 descriptions of
objects collected with an RGB-D sensor. Each object has
descriptions in unconstrained English, Spanish and Hindi.
In Section III-B and Section III-C, we describe applying
a grounded language acquisition system designed for En-
glish [25] to this corpus, including brief descriptions of the
natural language processing tools used. Finally in Section IV,
we demonstrate the need for human-provided training data,
analyze specific sources of performance degradation across
language pairs, and offer design suggestions for perceptually
grounded language learning systems that are intended to be
agnostic about the language being learned.

To the best of our knowledge, this is the first work
that seeks to apply a grounded language learning system
designed for one language to other languages in order to
evaluate its transferability. Our main contributions are: This
evaluation, along with a detailed analysis of sources of error;
a dataset containing images and trilingual descriptions of
those objects; and a set of suggestions and considerations
for future research in this area. We will make our dataset
available upon publication.
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II. RELATED WORK

Grounding natural language to the physical world [11]
is highly relevant to robotics research, and researchers are
addressing the question from a variety of perspectives. There
have been a number of successful approaches in different
areas, such as navigation [31], [20], understanding com-
mands and directions [2], [1] or action words [5], grounding
spatial relations and concepts [24], and referring expressions
for objects in images [8], [36]. Other work has explored
interactively grounding additional non-visual properties like
sound and weight [32].

Our experiments focus on the problem of learning peo-
ple’s preferred labels for color, shape, and semantic object
labels from unconstrained descriptions of real-world objects.
Understanding such attributes is critical for tasks such as
grasping [18] and collaboration [14]. In this work, rather than
learning connections between novel language and an existing
formulation, we follow the approach of [21], extending the
formal representation as novel words are encountered.

Many grounded learning systems associate words with
the perceived world [30], [19]. In this paper, we demon-
strate the importance of selecting natural language process-
ing techniques carefully when improving the efficiency of
such grounded learning systems. Language pre-processing
techniques have been studied when measuring document
clustering and retrieval [15], [3], but not in visual-linguistic
grounding. This paper further examines visual classification
tasks with lemmatized and/or stemmed tokens of various
categories and proposes approaches to improve learning.

Some systems that ground language attributes apply com-
plex, structured linguistic analysis techniques to utterances
in order to examine how particular phrases might relate
to other parts of the sentences [24], [21]. Applying these
structured linguistic approaches to an arbitrary new language
is a complex undertaking, sometimes requiring costly expert
annotation. In this paper, we consider each token in isola-
tion and do not use any additional language features from
the descriptions when learning the meaning of the tokens,
allowing the model to scale more easily across languages.

Most research has focused on learning English-based
robotic language acquisition systems, although there are
some non-English corpora that do exist that could potentially
be used (e.g., [7], [33], among others). In contrast, we
concentrate on developing language grounding models from
descriptions of objects gathered via a low-cost robotic sensor.
In our experiments, we extended the monolingual public
image dataset of Pillai and Matuszek [25] by collecting (non-
paired) Hindi and Spanish language descriptions from native
speakers.

Frank et al. [9] evaluate the preference of descriptions
generated by native language speakers over the descriptions
translated from a different language, whereas we evaluate
how well a system trained on either translated data or Ama-
zon Mechanical Turk language descriptions collected from
native speakers could then complete the object recognition
task using AMT descriptions.

Our work is most similar to that of [13] and [10],
who improve the performance of learning visual-semantic
embeddings by training over multiple languages. However,
our work differs in two important ways. First, rather than
using descriptions of perceptual data from several languages
matched to one another, we explore how a core learning
architecture designed for a particular language transfers to
a new language; we do not assume that parallel (aligned)
multilingual descriptions are available. Second, we collect
unconstrained language about particular objects as seen by
a real sensor, rather than relying on caption data. This is
consistent with the goal of deploying robots for use by non-
specialists in different environments.

III. APPROACH

There is a substantial body of research on learning map-
pings between a natural language and robot-usable repre-
sentations. We follow [28] and [25] in using a words-as-
classifiers model, in which a robot learns a mapping from
each word in a language to classifiers trained on perceptual
data over objects or actions. This process consists of three
stages. First, perceptual data and descriptions of objects are
collected in multiple languages, simulating inputs a robot
might receive when being taught about a new object. Second,
the language and percepts are pre-processed to extract fea-
tures, and relevant language tokens (words) are extracted and
paired with the features of the objects they describe, along
with suitable negative examples [25]. Third, for each term,
several binary classifiers are trained and evaluated against a
held-out set of objects. Fig. 3 shows this architecture.

A. Data Corpus

The system was trained and tested using a novel corpus
consisting of RGB-D images paired with multilingual natural
language descriptions of the objects in the images. This
corpus extends the public dataset of [25], tripling the number
of language descriptions. The dataset itself has 18 object
categories (such as carrot and arch), with four instances
(individual objects) in each category and an average of five
images of each instance (see Fig. 2 for examples). Each
image was taken from various angles with a Kinect2 depth
sensor, yielding both RGB-D point clouds and regular color
images. The goal in using these images was to collect images
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Fig. 2. Cropped Kinect2 images of twelve objects. All categories in the
data set were toy blocks, fruit, or vegetables of various colors and shapes.
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This diagram shows the data flow of the grounded language acquisition system, from sensor and language data collection, through selection of

training data and learning of classifiers, to eventual testing of those classifiers. Individual sections indicate the elements of the approach, as detailed in
Section III. Note that while this diagram only shows classifiers and examples for “red” and “cube,” classifiers are learned for all tokens.

that accurately represent how a robot might perceive objects
in its environment. The RGB images were masked so only
the objects were visible to participants.

In existing and previous work, the English natural lan-
guage descriptions of each instance were obtained using
the Amazon Mechanical Turk crowd-sourcing platform. We
chose to mimic this setup when collecting fluent speaker
descriptions in Hindi and Spanish. These languages were
chosen for their high number of speakers, as well as their
varying dissimilarities to English. Our motivation for collect-
ing new language data was to determine whether machine-
translated training data is sufficient to handle language use
by native speakers, or if it is necessary to involve speakers
of that language to train an adequate model. As we discuss
later in this paper, we found that the translated data was not
sufficient for learning the language used by native speakers,
resulting in an approximately 20% reduction in Fj score
across all languages (see Fig. 5).

Workers were presented with cropped and masked images
of objects and asked to provide descriptions. We chose to
provide the workers with no sample descriptions, in order
to maximize the variation in the descriptions. The purpose
of this was to evaluate our model with data that could
accurately represent the ways in which speakers of each
language might talk about objects when presenting them to
a robot. Despite the lack of priming, many workers in all
three languages chose to describe most objects with simple
descriptions like “This is a red cube.” However, we also saw
noticeable variation in all three languages, where workers
chose to provide extra information about objects, such as
describing cucumbers as healthy or being good in a salad.

The dataset contains 6,045 descriptions in English, 5,735
descriptions in Hindi, and 5,104 in Spanish. Originally, over
6,000 descriptions were collected for each of Hindi and
Spanish, but in both cases we excluded descriptions from
workers who explicitly did not follow the directions, such
as by responding in the wrong language or consistently
responding with text unrelated to the images they were being
asked to describe; we did not exclude for other reasons. In

the analysis section, we account for the smaller number of
descriptions collected in Spanish and Hindi by randomly sub-
setting all datasets in such a way that each instance is trained
on an equal amount of descriptions in each language. The
results are averaged from several of such subsets.

B. Semantic Processing of Descriptions

Once collected, descriptions were put through a series of
preprocessing steps to extract relevant tokens. We defined
a relevant token as a word the robot might want to learn
to recognize. For example, in the description “This object
is a large yellow banana!”, a preprocessed version might
be “object large yellow banana” (or “large yellow banana”).
We conducted initial experiments to determine methods that
extracted the most appropriate tokens in the three languages.

1) Stemming and Lemmatizing Tokens: The overall design
of this grounded language learning system hinges upon
gaining an understanding about the meaning of a new object
or attribute descriptor by examining the objects it was used
to describe. Given limited training data, the system should
be able to recognize when the same word is being used
across different examples. In English, nouns have only a
singular or plural form, and adjectives are rarely conjugated
(with the exception of comparative terms like “larger”). In
contrast, in both Spanish and Hindi nouns can be gendered
and adjectives are often conjugated to match the gender of
the nouns. For example, in Spanish, “The red table” is “La
mesa roja,” where “roj” is the stem of the adjective “red,” and
“roja” is the feminine singular form. A robot may therefore
unnecessarily learn both a masculine and feminine word
describing the same concept, subdividing the training data
and weakening the resulting classification.

Past work applied a lemmatizer to the English data to
remove conjugation from words. Lemmatizers take words
that have been conjugated in some way and reduce them to

Following standard language approaches, we lower-cased all words (which
was only a valid step for Spanish and English) and removed punctuation,
including language-specific punctuation like the Spanish upside-down
question mark and the Hindi full-stop.
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their unconjugated forms—for example, reducing “running”
to “run.” When examining this step in the context of Hindi
and Spanish, due to a lack of readily available non-English
lemmatizers, we replaced lemmatization with the simpler
but related step of stemming. Stemming is very similar to
lemmatization in that both tools take conjugated words and
remove the conjugation. The difference is that stemmers
simply chop off conjugations instead of attempting to find
the original unstemmed form. This simplification makes
them potentially less effective (e.g., a stemmer might reduce
“running” to “runn” instead of “run”), but also much easier
to implement. For this paper, we use the NLTK Snowball
Stemmer [26] for Spanish and English text while For Hindi
we used the simple stemmer described in [27].

2) Stop Word Ildentification and Removal: An additional
challenge in using unconstrained natural language is iden-
tifying what words the system should attempt to learn
physical meanings for and what words it should ignore.
In natural language processing, it is common practice to
remove “stop words” from language data as a preprocessing
step. Stop words are defined as words that are necessary
to form grammatical sentences, but do not contribute to the
overall meaning of the sentence. We considered two kinds of
stop words, general and domain-specific. There are publicly
available lists of general stop words, such as “the” or “and.”
For English and Spanish, we used NLTK’s stop word lists
in each language. Since NLTK did not have a list for Hindi,
we instead utilized the stop word list compiled in [29].

In our data, terms such as “object” or “item,” were
broadly used as generic terms to describe most elements in
the dataset. We identified these domain-specific stop words
by their Inverse Document Frequency (IDF), an effective
method for information retrieval in which each word was
scored according to the log of the number of instances in
the dataset divided by the total number of instances where
that word appeared in some description. Words with low
IDF scores appeared in many different descriptions and were
removed. We discuss this further in later sections.

C. Model Learning

This section discusses the grounded language learning
system’s components, including feature extraction and iden-
tification of “ground truth” positive and negative examples.

1) Tokenization and Positive/Negative Example Identifi-
cation: After the descriptions were preprocessed, the next
step was to extract relevant tokens and identify positive
and negative examples of these tokens. As the only human
guidance we have is the collection of unprompted and
unguided descriptions (as opposed to annotations over pre-
defined labels), the “ground truth” for what instances were
and were not representative of various concepts had to be
extracted from the descriptions.

To identify relevant tokens, we concatenated all descrip-
tions for each instance (approximately 80 descriptions per
instance) and counted how many times each unique word
was used. If a word was used more than five times for
a particular instance, the instance was deemed a ‘“‘positive

Fig. 4. A visualization of negative example selection for the token “yellow.”
Note that the negative examples selected (shown with red dotted arrows)
were the ones that were the farthest away from the most positive instances
(shown with green dashed arrows).

example” of that word. Words that did not have at least
three positive examples were excluded from consideration,
as it was deemed that the robot had not seen this concept
enough times to learn it. By extracting the tokens in this way,
the system ignored any context in which the token was used
outside of the image it was paired with.

Once positive examples were found for each token, our
system also needed negative examples. Negative examples
are rarely given in descriptions: users are much more likely
to describe an object with positive properties, rather than
enumerate negative properties. To address this, we used the
approach of [25]. We took the combined descriptions of each
object instance and represented these descriptions in vector
space using the Distributed Memory Model of Paragraph
Vectors (PV-DM) [22], [17]. We used the PV-DM model
to measure dissimilarity between descriptions; in this model,
semantically similar documents are similar in vector space.
We used the cosine similarity statistic measure to find the
dissimilar vectors and used those objects as negative exam-
ples in our language learning model. The intuition behind
this approach is that instances that are negative examples of
other instances are likely to have been described using very
different language.

One consideration when choosing negative instances was
that a token may have positive instances that are dissimilar
to each other (see Fig. 4). We minimize this risk by choos-
ing negative examples that are the farthest away in space
from the most positive instances. This was decided using
a weighted vote. For a term, all objects that had ever been
described using that term were discarded. Remaining objects
were sorted by the cosine similarity of their descriptions in
vector space, and the last 2/3rds of the list were retained.
Each positive instance then returned this set of candidates,
weighted by similarity. The final scores for each negative
instance candidate came from the sum of its weighted vote.
The candidates were sorted by this score, and the top 25%
of the candidates were selected as negative examples. This
value was chosen experimentally. Tokens with no identified
negative examples were removed from consideration.

2) Extracting Image Features: For the classification task,
two kinds of features were extracted from the RGB-D
images. For generating color features, the RGB images of
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the objects were used. The RGB features of all pixels in the
images were clustered using k-means based on RGB values.
Then histograms were created based on the density of all
clusters. The ‘R G B’ values of the centroid with the highest
density were selected as the color features. We used HMP-
extracted kernel descriptors [16], [4] to take the location and
depth data for each image and extract shape features.

3) Training and Testing Classifiers: For each remaining
token, three binary classifiers were trained using logistic
regression on positive instances (objects described using
that token) and negative instances selected as above. The
underlying idea behind training all three types of classifiers
per token was that a new word might describe a color, shape,
or object and a robot with no previous knowledge would
not know which category the token should belong to. Color
classifiers were trained using RGB features, shape classifiers
were trained using HMP features, and object classifiers were
trained using a combination of the above. During evaluation,
each classifier attempted to classify held-out instances.

IV. EXPERIMENTAL RESULTS

In this work, we expand the language learning system
previously tested with English data to additional languages.
To assess the quality of the language groundings, we applied
the learned token classifiers to an object selection task. One
instance of every object category and its descriptions were
held out during training for testing. For each token used
in the descriptions of these instances, positive and negative
examples were found from the testing instances, as discussed
above. The token classifiers learned in the training phase
were then scored by how accurately they could identify
which instances were positive and which were negative
examples of the token when presented with images of those
instances. The choices of which instances to test on and
which image of each instance to present were randomized,
and the scores found for each token were the average from
choosing ten times. The entire evaluation setup was run
twenty times for each time the model was trained on a
different train-test split. The model was trained nine times
for each result reported.

In addition, as each token had a separate color, shape,
and object classifier, three Fl-scores were reported for each
token. The final Fl-scores presented here average the F1-
score across all test tokens for each category. We note
that we did not do any manual selection of which words
would normally belong in each category, thereby depressing
the overall scores. Tokens that appeared in testing but not
training data received an F1-Score of 0.

Next we discuss the performance of the system, and how
it was impacted by both the origins of the training data and
the language processing steps applied to it.

A. Performance Across Data Sources and Processing Tech-
niques

1) The Utility of Translated Data: For a robotic system to
learn language data in new languages, it would be convenient
if one could train such a system on translations of the
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Fig. 5. System performance as compared between training the model

on a translated version of the English dataset and training it on using
descriptions collected in the target language using crowd-sourcing. Note
that the translated dataset was not sufficient for learning many of the tokens
used by native speakers when describing the images.
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Fig. 6. Overall scores of all three languages. This compares the perfor-
mance over the un-stemmed “raw” datasets, and the stemmed versions. Note
that to allow for fair comparison, the Hindi, English, and Spanish datasets
have been subset to have equal amounts of descriptions per instance. The
error bars provide the variance in the scores.

language data already collected. We explored this possibility
in Fig. 5, which shows the performance of the system
when it was trained using either a translated version of the
English dataset (using Google Translate’s API [35]), or the
crowd-sourced descriptions. In both cases, the trained models
were tested on the tokens and positive/negative instances
identified from the crowd-sourced descriptions, as these most
accurately represent how a native speaker might describe
the objects to a robot. The figure shows that the classifiers
trained using the translated corpora were not sufficient when
faced with the native language data. A major contribution
to the lower performance was the large number of tokens
that were used in the Mechanical Turk descriptions, and not
in the translated corpora. Intuitively, a direct translation of a
corpus in English was unable to accurately represent the wide
variety of ways that a native speaker in the target language
might describe the same objects.
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2) Results Across Languages: Fig. 6 shows the average
Fl-scores of the model across the three languages when
trained and tested on the Mechanical Turk descriptions. The
model performed comparably across the three languages.
Average scores were somewhat low due to the large number
of previously unseen words occurring in the test data; this
was especially the case for Spanish, with an average of fifty
previously unseen tokens per testing run (where English and
Hindi each averaged approximately thirty). This is primarily
a product of our relatively small dataset; larger initial training
data collected from Mechanical Turk would likely improve
performance by ensuring that more total descriptions oc-
curred in the test split.

3) Language Processing Considerations: When expand-
ing the grounded language system to Hindi and Spanish,
some consideration had to be made of the language pro-
cessing techniques chosen in order to ensure that relevant
tokens were identified and correctly conflated. Stemming had
a relatively low impact on the scores. Qualitative analysis of
the results showed that stemming did enable the system to
correctly conflate different gendered forms of adjectives in
Hindi and Spanish. Fig. 7 shows the effect of varying the
IDF score threshold for removal, showing that the optimal
threshold varied by language. For Spanish, several important
color words were used often enough that they appeared in
the bottom 2% of tokens by IDF score, while for Hindi,
the bottom 3% of terms were safe to remove. These are
comparatively small differences, but suggest that although it
can be beneficial to remove unnecessary words, care must
be taken when defining what tokens to remove.

B. Design Criteria for Language-Agnostic Learning

In the course of this work, we have presented a compara-
tive analysis of the performance of a particular grounded lan-
guage learning method when applied to two novel languages.
Beyond this detailed analysis, an additional contribution of
this work is suggested design criteria that groups designing
grounded language learning systems may wish to consider.

First, consistent with expectations, we find that the more
sophisticated a semantic processing step is, the less likely
it is to work in a new language without significant modifi-
cations. For example, the simpler approach of stemming is
more accessible than lemmatization for the novel languages
considered. A robotics audience may then wish to explore
learning methods that do not rely heavily on natural language
preprocessing, or to focus on methods that are themselves
relatively language-agnostic.

Second, training data beyond that provided by end-users
should be provided by fluent speakers of the new language
whenever possible. Fig. 6 shows that for our test case,
using training data drawn from a simple machine translation
approach was inadequate to support classifier performance
when tested with fluent speakers, who tend to take wide
advantage of the rich variety of terms and idioms available.

Finally, in general, the words-as-classifiers approach is
well suited to transitioning across languages. The only mod-
ifications required were in identifying meaningful words in
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Fig. 7. Stop words as selected by IDF, showing the 1-3% of tokens
occurring in the most documents, in each of English (top), Spanish (middle),
and Hindi (bottom). Color words incorrectly occur in the top 2% for Spanish
and 3% for English; in Hindi no color or shape words appeared in the top
3%. This suggests that the percentage of words removed may need to be
tuned by language.

the data. This reduces possible complications that would
be introduced by more sophisticated NLP techniques. For
example, disregarding the relative placement of words in
the descriptions meant that the model was unaffected by the
fact that Hindi has much looser rules for word ordering than
English or Spanish.

V. DISCUSSION AND FUTURE WORK

Grounding natural language in perception is an essential
task in human robot interaction. In this paper, we have
taken an existing grounded language learning system and
demonstrated that it can be easily extended to handle data
in new languages. We found that when designing a system
with unconstrained language data and noisy perceptual data,
it is important to minimize and simplify the natural language
processing preprocessing steps. We collected two new lan-
guage corpora in Spanish and Hindi, and demonstrated that
translated data was not sufficient for training. We will make
our novel corpus available upon publication. In the future,
we will implement the modified system or a similar learning
system on a mobile robot in collaborative setting, where it
must learn from and then interact with people using one or
more novel languages.
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