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Abstract

Grounded language acquisition is concerned with
learning the meaning of language as it applies to
the physical world. As robots become more capa-
ble and ubiquitous, there is an increasing need for
non-specialists to interact with and control them,
and natural language is an intuitive, flexible, and
customizable mechanism for such communication.
At the same time, physically embodied agents of-
fer a way to learn to understand natural language
in the context of the world to which it refers. This
paper gives an overview of the research area, se-
lected recent advances, and some future directions
and challenges that remain.

1 Introduction

Advances in robotics are enabling progressively more sophis-
ticated, capable technologies to reach large consumer popu-
lations. Such systems offer unprecedented potential for Al to
help in a variety of human-centric applications such as elder
care and household maintenance. However, natural, easy-to-
use interfaces to such systems, such as those employing nat-
ural language, are lagging behind. As robots become more
prevalent—and as the need for the services they can offer
grows—the importance of allowing non-expert users to in-
teract with them naturally and comfortably increases. Nat-
ural language is an excellent modality for end users to give
instructions and teach robots about their environments.

At the same time, physically grounded agents provide
unique opportunities for language learning. Human lan-
guage does not exist in isolation; it is learned, understood,
and applied in the physical world in which people exist.
Understanding symbols and symbolic reasoning has been
a core element of artificial intelligence throughout the his-
tory of the field [Newell and Simon, 1976; Searle, 1980;
Harnad, 1990]. Finding the connection between those sym-
bols and their underlying meanings is the grounded language
acquisition problem: taking linguistic tokens and learning to
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interpret them by connecting them to real-world percepts and
actions [Mooney, 2008].

The core idea underlying this work is that treating language
learning as a physically grounded problem can improve the
efficiency and efficacy of both natural language processing
and robotics. Intuitively, language can be better learned when
presented and interpreted in the context of the world it per-
tains to, and robots can learn to be more useful and more
flexible when language is used to describe and disambiguate
the noisy, unpredictable world in which they operate. Learn-
ing these groundings on the fly from non-specialists allows
a deployed robot to learn and continually update a situation-
specific model of language and tasks in its environment.

The work presented in this paper centers on the use case of
people teaching a robot about objects and tasks in its environ-
ment via unconstrained natural language. The research focus
is on formulating and using statistical machine learning ap-
proaches to allow robots to gain knowledge about the world
from interactions with users, while simultaneously acquiring
semantic representations of language about objects and tasks.

Rather than considering these problems separately, they are
addressed concurrently by employing a joint learning model
that treats a combination of language, perception, and task
understanding as strongly associated training inputs. This ap-
proach allows each of these channels to provide mutually re-
inforcing inductive bias, constraining an otherwise unman-
ageable search space and allowing robots to learn from a rea-
sonable number of ongoing interactions.

There are many approaches to symbol grounding, includ-
ing formal methods that manually define words [Boteanu et
al., 20171, cognitive approaches [Mohan and Laird, 2014],
and approaches in which meaning is represented as part of
a larger-scale knowledge framework [Williams and Scheutz,
2016] or graphical structure [Arumugam er al., 2017]. This
paper focuses on using statistical machine learning methods
to learn mappings between words and formal representations
of the world [Misra e al., 2017]. from paired corpora of lan-
guage and sensor data. We give brief examples of research
achievements and concepts in using machine learning to un-
derstand language, then touch on selected future directions
and open problems.



2 Language as Classification

One of the key questions for a statistical approach (and, in-
deed, most approaches) is: What underlying knowledge rep-
resentation should be used to represent groundings? For a
significant number of grounded language problems, a key in-
sight is that understanding words and phrases can be con-
ceptualized as a classification problem. When language
references physical objects [Matuszek er al., 2012] or ac-
tions [Tucker et al., 2017], words and linguistic structures
may be considered to denote a classifier for which those em-
bodied elements are positive data points.

For example, if a human teacher describes multiple ob-
jects in some physical context as ‘lemons,” the robot’s goal
is to subsequently perform tasks that rely on knowing what
that word denotes, such as “Get a lemon from the basket.” In
this case, the formal meaning representation of the NL token
‘lemon’ is a classifier, and the interpretation of something as a
referent of the language is the binary output of that classifier;
only positive class members are groundings of the utterance.
The classifier is trained using every object that has been re-
ferred to as ‘lemon’ as positive examples.

2.1 Training Grounded Language Classifiers

To implement this approach, a joint model of language and
sensor data is induced by combining language feature extrac-
tion from NL utterances with perception-based context that
captures the physical setting [Pillai and Matuszek, 2018]. The
linguistic and perceptual features used are chosen based on
the specific problem domain and sensors.

This formalization is shown in Figure 1. In this overview,
perceptually-derived world information, or context C, is in-
terpreted by a perceptual model that encodes the kind of
knowledge that the system is expected to learn—in this case
features representing color and shape. An encoding of some
particular context gives a formal, perceptual world represen-
tation w. Similarly, a language model (here, a learned seman-
tic parser) is applied to a natural language utterance x in order
to produce a formal semantic meaning representation, z.

To learn the connection between language and percep-
tion, it is necessary to compute the probability of the correct
grounding G conditioned on x and C' by summing over the la-
tent structures z and w. This joint learning problem can then
be expressed as follows. The language model P(z|z) and per-
ception model P(w|C') are trained independently, but then a
joint probability is specified by coupling them with a ground-
ing G, given by P(G|z,w), a conditional probability term
that holds the models in agreement. When G is observed, a
dependency between z and w is introduced. Interpretation of
language into world state is then given by maximizing:

P(G, z,w|z,C) = P(z|z)P(w|C)P(G|z,w)

In this approach, language groundings are learned by treating
words and linguistic features as denotations of visual classi-
fiers. Color and shape are well-defined examples for an ap-
proach to language grounding in which linguistic concepts
denote visual classifiers, but the treatment is appropriate for a
wide range of problems. For example, additional modalities
of communication such as deictic gesture can be classified
as to referent [Matuszek et al., 2014], and those classifica-
tions can be used as an additional form of context in the joint
groundings model. The type of learning used is equally flex-
ible. For example, the ‘words-as-classifiers’ approach to im-
age analysis is a special case of this approach, and has been
demonstrated to work well for deep learning over large-scale
data sets [Schlangen et al., 2016].

3 Learning Groundings Without Predefined
Formalisms

The approach described in this section allows a grounded
language learner that can learn novel language describ-
ing novel, unanticipated perceptual inputs. While there is
a significant body of research exploring the learning and use
of language in physical agents, much of that work is focused
on learning how novel natural language can be interpreted
into a predefined formal representation. The formal semantic
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Figure 1: A joint modeling approach to classifier-based language grounding. Blue, left: The system’s perceived world-state, or context (C'),
is interpreted in terms of a perceptual model that translates from raw percepts to a meaningful world description w. Green, right: natural
language input z is interpreted into a computer-meaningful formal representation z using a language model. In this example, the system has
learned that the parse Ax.color-orange is applicable to percepts that produce a high value from the color classifier Ccotor-orange ()-



representation is usually defined with respect to the robot’s
perceptual and actuator capabilities. As a result, natural lan-
guage inputs may be learned during training, but the formal
output is limited to a fixed grammar, which is inconsistent
with the goal of building adaptable robots that interact with
people in unpredictable environments.

3.1 Learning About Novel Physical Attributes

In the language acquisition example in Figure 1, the system
learns to connect natural language terms x to formal mean-
ing representations z that can be interpreted, through percep-
tion, into a world state w. To provide a concrete example, on
encountering the new word x = ‘ball,” the robot learns that
things described in that way can be formally interpreted as
z=Ax.shape-round (z), which is associated with the vi-
sual classifier w = Cspgpe-sphere- If there is no formal symbol
shape-round (-) with an associated classifier, a physical
grounding for the shape word ‘ball’ cannot be learned.

There are two components to addressing this limitation.
First, an embodied agent learning from language must add
new formal language tokens z on the fly as language is
encountered. Second, new mechanisms of interpreting the
world w must be created and associated with the new
tokens—that is, when novel language is encountered, one or
more new classifiers must be created. Broadly, symbols are
generated as needed in the formal representation of the world,
and classifiers are created to represent hypotheses about pos-
sible semantic meanings of the token.

In [Matuszek et al., 2012], a CCG-based semantic parser
was used to learn novel language about completely novel con-
cepts. When new English tokens were encountered, a set of
classifiers was created that represent hypotheses of the cat-
egory type of the word (such as shape, a color, a nonvi-
sual concept, or a synonym for another term). When one
classifier reached a certain level of descriptive strength, the
others were pruned and a new terminal linked to that clas-
sifier was inserted into the formal meaning representation
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Figure 2: An example of the learning process when a novel natural
language term is encountered. In practice, usually each term would
cause the creation of a large number of competing classifiers, each
of which represents a hypothesized grounding in perceptual space.

language. (Following the example above, on encountering
x = ‘ball’ with new percepts, z = Ax.shape-NEW-1 (x)
and z = Ax.color—-NEW-1 (x) would be added to the lan-
guage model and associated with the new visual classifiers
w = Cshape—new—l and w = Ceolor-new—1). An example is
shown in Figure 2.

This approach is similar to research on learning object
characteristics from exploratory robot interactions [Sinapov
et al., 2016; Thomason et al., 2018] and, particularly, at-
tempts to extend language models [She and Chai, 2016], but
with the addition of learning more generalized concepts of
perception. However, we build a joint model of language and
observation directly rather than learning over and populating
an underlying representation.

This approach allows for understanding of new lexical
items in language and new objects and characteristics in the
environment. The models learned are still subject to lim-
itations; most notably, the categories of types that can be
learned, such as ‘color,” are still predefined and have appro-
priate classifier features designed beforehand (see Section 5
for a discussion of relaxing this constraint). Nonetheless, this
work represents significant progress towards the goal of au-
tonomous grounded language learning.

4 Semantic Analysis of Physical Space

Much of the existing work on grounded language performs
some form of learning over paired corpora of language and
context. As the learning problem becomes less constrained,
mappings must be found between complex utterances and a
complex physical space, leading to a large search space.

This is a bootstrapping problem: knowing the meaning of
language can help narrow the search in the grounding space
and vice versa. However, even before a grounding is estab-
lished, it is possible to use semantic analysis of language
to learn more about the physical world.

The intuition underlying this claim comes from our ability
to perform extensive analysis of completely ungrounded lan-
guage. Documents can be clustered into topics, salient terms
can be selected from utterances, and distance metrics can be
evaluated with no understanding of how that language con-
nects to the physical world. If some language does have em-
bodied meaning, relationships within that language may also
hold in the physical context.

4.1 Negative Visual Examples from Language

In Section 3.1, the positive examples used in classifier train-
ing are objects that are described using a particular language
label. Everything described as “a lemon” to a robot is treated
as a positive example for a perceptual classifier. However,
most learning approaches depend on having negative exam-
ples, which are notoriously difficult to obtain from uncon-
strained speech. Unless prompted explicitly, it is unusual for
someone to describe an lemon as “not an apple.” In addition,
positive labels cannot be assumed to be exhaustive—if a per-
son says “This is a lemon,” that object is not necessarily a
negative example for the word ‘yellow,” even though it was
not described as yellow in that sentence.

However, while a single label may not provide sufficient
information to assume that something is a negative example
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Figure 3: Average accuracy of classifiers for three different cate-
gories of embodied object attributes. Negative data is selected by
using randomly chosen non-positively-labeled objects (green, top),
all non-positive objects (blue, middle), or using semantic similarity
(red, bottom). Using an informed distance metric to select negative
examples improves performance in every category.

of a word or concept, a set of descriptions sufficient for learn-
ing embodied language is likely to be more complete. This
makes it possible to find negative perceptual examples for
classifier training by comparing the linguistic descriptions of
those objects, even when the meaning of that language has
not yet been learned.

To test this intuition, a set of descriptions of common
food objects was collected. Descriptions of each object
were concatenated into an unordered document, which was
encoded into the well-known Paragraph Vector represen-
tation [Mikolov et al., 2013]. Cosine similarity between
these vectors was used to find semantically dissimilar ob-
jects, which were then used as negative examples for classifier
training [Pillai and Matuszek, 2018]. This is consistent with
the fully unsupervised label identification of [Roy, 20021, but
uses document similarity metrics rather than term clustering.

This similarity metric was evaluated both directly by anno-
tators, where it was found to be generally consistent with hu-
man judgments, and indirectly by using semantic distance to
select negative examples for visual classifier training, which
improved classifier accuracy significantly (Figure 3).

Overall, this work bears out the insight that linguistic sim-
ilarity is closely tied to perceptual similarity in the shared
grounding space. This allows for unsupervised selection of
negative examples for learning, but also implies there may
be other ways inputs to a grounded language learning sys-
tem may be evaluated before mappings between language and
world context are determined. The same reasoning may ap-
ply equally well to analyzing sensor data in order to discover
relationships within elements of language.

S Open Challenges

To be customizable and flexible in unpredictable environ-
ments, robots will need be able to learn new concepts from
their users efficiently. Current grounded language learning
often requires hundreds of utterances to learn concepts. Such
a data set is reasonable in machine learning and natural lan-
guage processing, especially given the complexity of the task.
However, end users are unlikely to provide that many labels
for a single task or learning target. User training will there-
fore need to be supplemented by other mechanisms from the

rich existing corpus of research on learning. The first two
suggested research directions directly address this question,
while the third depends on solving it.

Human-Robot Dialog for Active Learning One way of
improving efficiency is to make use of active learning. Ask-
ing questions about specific topics often leads to faster learn-
ing than receiving data sequentially, in part because queries
can be selected using a variety of information-theoretic meth-
ods [Settles, 2012]. To go beyond learning passively from a
human teacher, it is necessary for a robot to ask questions
and otherwise direct its own learning, which will ultimately
require incorporation of models of dialog and discourse.

This is particularly relevant for problems which require
local or customized labeling. For example, to learn what a
lemon is, asking Mechanical Turk or doing an image search
is almost always correct. By comparison, if a person is try-
ing to ask a robot to retrieve “my mug,” the correct language
grounding is very specific to the environment.

Sharing Learned Models among Agents In a collabora-
tive setting with multiple robots, users should not be ex-
pected to teach the same things repeatedly. Learned mod-
els of language grounding should, as much as possible, be
shared among all robots in the environment. Similarly, robots
that are not physically co-located should be able to share
and combine learned models when applicable. Sharing data
among robots with different sensors further increases com-
plexity, since learned models cannot be transferred directly.

Transferring learned models of grounded language be-
tween heterogeneous agents is understudied, with the excep-
tion of systems that use shared pre-existing knowledge into
which concepts can be grounded [Bozcuoglu er al., 2018].
The question of how to transfer purely learned models draws
from transfer learning, domain and feature adaptation [Long
et al., 2015], sensor difference modeling, shared language
evolution [Spranger and Steels, 20151, and other active areas
of research.

Beyond Objects and Tasks In Section 3, the inability of
the learner to generalize to entirely novel visual categories is
mentioned. Color, shape, and object type are only a few of the
many different categories people may use to describe objects.
While this specific example may be addressed in part by using
generic visual features [Donahue ef al., 2014] and more so-
phisticated learning, it is representative of a greater problem,
which is that concrete language about objects and actions is
only a small part of embodied language use. The biggest chal-
lenge that lies ahead is moving beyond descriptive language
to more general vocabulary and higher-level representations
of meanings, including more abstract, pragmatic, and intent-
driven language interpretations. This will require richer rep-
resentations of contextual world information, including mod-
els of time [Paul et al., 2017], people and intent.

6 Discussion

Language-using robots must learn how words are grounded
in the noisy, perceptual world in which a robot operates, and
natural language systems can benefit from the rich contextual



information provided by sensor data about the world. De-
spite an extensive and growing body of research, a significant
number of challenges still need to be addressed before we
see language-controlled robot assistants deployed in human
spaces. This goal will continue to drive technical advances
in robotics, natural language processing, machine learning,
cognitive science, and other areas.

References

[Arumugam ef al., 2017] Dilip  Arumugam,  Siddharth
Karamcheti, Nakul Gopalan, Lawson L.S. Wong, and
Stefanie Tellex. Accurately and efficiently interpreting
human-robot instructions of varying granularities. In
Robotics: Science and Systems (RSS), 2017.

[Boteanu et al., 2017] Adrian Boteanu, Jacob Arkin, Sid-
dharth Patki, Thomas Howard, and Hadas Kress-Gazit.
Robot-initiated specification repair through grounded lan-
guage interaction. In AAAI Fall Symposium on Natural
Communication for Human-Robot Collaboration, 2017.

[Bozcuoglu et al., 2018] Asil Kaan Bozcuoglu, Gayane
Kazhoyan, Yuki Furuta, Simon Stelter, Michael Beetz, Kei
Okada, and Masayuki Inaba. The exchange of knowledge
using cloud robotics. IEEE Robotics and Automation Let-
ters (RA-L), 3(2):1072-1079, 2018.

[Donahue et al., 2014] Jeff Donahue, Yangging Jia, Oriol
Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. Decaf: A deep convolutional activation
feature for generic visual recognition. In Proc. of the 31
International Conference on Machine Learning, 2014.

[Harnad, 1990] Stevan Harnad. The symbol grounding prob-
lem. Physica D: Nonlinear Phenomena, 42(1), 1990.

[Long et al., 2015] Mingsheng Long, Yue Cao, Jianmin
Wang, and Michael I Jordan. Learning transferable fea-
tures with deep adaptation networks. In Proc. of the 32"¢
International Conference on Machine Learning, 2015.

[Matuszek et al., 2012] Cynthia Matuszek, Nicholas Fitz-
Gerald, Luke Zettlemoyer, Liefeng Bo, and Dieter Fox.
A Joint Model of Language and Perception for Grounded
Attribute Learning. In Proc. of the 29" International Con-
ference on Machine Learning (ICML), 2012.

[Matuszek et al., 2014] Cynthia Matuszek, Liefeng Bo,
Luke Zettlemoyer, and Dieter Fox. Learning from un-
scripted deictic gesture and language for human-robot in-
teractions. In Proc. of the 28" National Conference on
Artificial Intelligence (AAAI), March 2014.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositional-
ity. In Advances in Neural Information Processing Systems

(NIPS), 2013.

[Misra et al., 2017] Dipendra Misra, John Langford, and
Yoav Artzi. Mapping instructions and visual observations
to actions with reinforcement learning. In Proc. of the 34"
Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2017.

[Mohan and Laird, 2014] Shiwali Mohan and John E Laird.
Learning goal-oriented hierarchical tasks from situated in-
teractive instruction. In Proc. of the 28" National Confer-
ence on Artificial Intelligence (AAAI), 2014.

[Mooney, 2008] Raymond J. Mooney. Learning to connect
language and perception. In Dieter Fox and Carla P.
Gomes, editors, Proc. of the 23" Conference on Artificial
Intelligence (AAAI), pages 1598-1601, 2008.

[Newell and Simon, 1976] Allen Newell and Herbert A Si-
mon. Computer science as empirical inquiry: Symbols
and search. Communications of the ACM, 19(3), 1976.

[Paul ef al., 2017] Rohan Paul, Andrei Barbu, Sue Felshin,
Boris Katz, and Nicholas Roy. Temporal grounding graphs
for language understanding with accrued visual-linguistic
context. In Proc. of the 26" International Joint Conference
on Artificial Intelligence (IJCAI), 2017.

[Pillai and Matuszek, 2018] Nisha Pillai and Cynthia Ma-
tuszek.  Unsupervised end-to-end data selection for
grounded language learning. In Proc. of the 32" Na-
tional Conference on Artificial Intelligence (AAAI), New
Orleans, USA, February 2018.

[Roy, 2002] Deb K Roy. Learning visually grounded words
and syntax for a scene description task. Computer Speech
& Language, 16(3):353-385, 2002.

[Schlangen et al., 2016] David Schlangen, Sina ZarrieB, and
Casey Kennington. Resolving references to objects in pho-
tographs using the words-as-classifiers model. In Proc. of
the 54" Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2016), 2016.

[Searle, 1980] John R Searle. Minds, brains, and programs.
Behavioral and brain sciences, 3(03):417-424, 1980.

[Settles, 2012] Burr Settles.  Active learning.  Synthesis

Lectures on Artificial Intelligence and Machine Learning,
6(1):1-114, 2012.

[She and Chai, 2016] Lanbo She and Joyce Y Chai. Incre-
mental acquisition of verb hypothesis space towards phys-
ical world interaction. In Proc. of the 54 Meeting of the
Association for Computational Linguistics (ACL), 2016.

[Sinapov et al., 2016] Jivko Sinapov, Priyanka Khante,
Maxwell Svetlik, and Peter Stone. Learning to order
objects using haptic and proprioceptive exploratory
behaviors. In Proc. of the 25™ International Joint
Conference on Artificial Intelligence (IJCAI), 2016.

[Spranger and Steels, 2015] Michael
Steels.  Co-acquisition of syntax and semantics—an
investigation in spatial language. In Proc. of the 24"

International Joint Conference on Artificial Intelligence
(IJCAI), Buenos Aires, Argentina, 2015.

[Thomason et al., 2018] Jesse Thomason, Jivko Sinapov,
Raymond J Mooney, and Peter Stone. Guiding exploratory
behaviors for multi-modal grounding of linguistic descrip-
tions. In Proc. of the 32" National Conference on Artifi-
cial Intelligence (AAAI), 2018.

Spranger and Luc



[Tucker et al., 2017] Mycal Tucker, Derya Aksaray, Rohan
Paul, Gregory J Stein, and Nicholas Roy. Learning un-
known groundings for natural language interaction with
mobile robots. In International Symposium on Robotics
Research (ISRR), 2017.

[Williams and Scheutz, 2016] Tom Williams and Matthias
Scheutz. A framework for resolving open-world refer-
ential expressions in distributed heterogeneous knowledge
bases. In Proc. of the 30" Conference on Artificial Intelli-
gence (AAAI), 2016.



