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Abstract—There has been substantial work in re-
cent years on grounded language acquisition, in which
paired language and sensor data are used to create
a model of how linguistic constructs apply to the
perceivable world. While powerful, this approach is
hindered by the difficulty of obtaining unprompted
negative examples of natural language annotations.
In this paper, we describe an initial pilot of a sys-
tem that uses natural language similarity metrics to
automatically select negative examples from a paired
corpus of perceptual and linguistic data.

I. INTRODUCTION

Semantic representations of complex real-world en-
vironments are a powerful tool for supporting in-
ference, action planning, and intuitive robot-human
interaction. Obtaining such representations from
interactions with non-specialists has significant ad-
vantages, allowing robots to learn appropriate lan-
guage models for the wide range of real world
situations, rather than requiring preemptive model-
ing for different settings. Natural language under-
standing provides a framework for both natural user
interaction and for learning such semantics at the
granularity of interest to users.

One promising area of research concerns using
unconstrained language paired with sensor and ac-
tuator data to support learning about objects ef-
ficiently from human interaction. [11, 22] How-
ever, building semantic models from unconstrained
natural language is challenging. One approach to
learning grounded language is to treat it as a
joint learning problem, in which visual classifiers
are learned in conjunction with language models,
treating language descriptions as labels for novel
visual percepts. [10, 14] However, efficient training
of joint models generally relies on both positive and
negative training data.

This is a particular challenge in grounded lan-
guage acquisition because it is unusual for people
to provide negative examples without prompting.
(For example, one would not normally describe an
object as “not yellow.”) Furthermore, a lack of a
positive label does not imply a negative grounding;
something described as “a carrot” is not a good
negative grounding for an “orange” classifier. This
problem is well-known to have an effect on human
grammar acquisition, [2, 8] parser learning, [5] and
grounded lexical acquisition. [15]

In this paper, we describe how natural language
document similarity metrics can be used to select
appropriate negative examples from a corpus of
training data. Our approach is to treat the set of all
descriptions of an objects as a document describing
that object and then determine the similarity of
pairs of documents; objects with dissimilar docu-
ments are then treated as negative examples for one
another (see Figure 1). Our initial results support
the idea that purely linguistic tools can be used to
analyze corpora of perceptual training data.

Fig. 1. Positive and negative training data for classifiers denoted
by descriptive words, as automatically selected by linguistic
analysis of positive object descriptions. Examples are shown of
words used for object type, shape, and color; an example of a
nonvisual word with poor predictive power, ‘like,’ is also shown.
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II. RELATED WORK

Almost all work on learning to understand
grounded language relies in some part on learn-
ing algorithms that use negative labels as part of
learning. The most straightforward approach is to
explicitly collect negative labels, [23, 4] possibly
through crowdsourcing [21, 6] or gameplaying. [24]
However, this may not be applicable to all mecha-
nisms for gathering language. Another possibility is
to associate randomly chosen groundings with terms
that are not used to describe those images. [19, 3]
Because language is not exhaustive, this approach
is noisy and may require manual cleanup. [20]

Another practical technique that can be incor-
porated is to design language collection trials that
either use objects that have no shared visual charac-
teristics, [10] or explicitly design trials that exhibit
negative characteristics. [18] Our work is most
similar to the fully unsupervised label identification
of Roy [15], but uses document similarity metrics,
rather than term clustering.

In order to choose appropriate language terms
for which to train classifiers, we rely on the well-
known tf-idf algorithm, which has been used to
determine the descriptive power of terms, [17] their
relevance to particular documents, [25] and as a
document similarity metric. [16] Our selection of
negative labels uses the Paragraph Vector algorithm,
which learns representations of features from vary-
ing length documents. [12, 13] We employ the
Distributed Memory Model of Paragraph Vectors
(PV-DM) for this work. [9]

III. BACKGROUND

TF-IDF: tf-idf, short for term frequency-inverse
document frequency, is a well-studied metric that is
reflects how important a word is to a document in a
collection or corpus. The tf-idf value increases pro-
portionally to the number of times a term appears
in the document, which reflects the term’s relevance
to that document, and decreases with the number
of documents containing that term, reflecting its
discriminative power. Intuitively, if a term such
as “cabbage” appears frequently in a document,
it is important to that document, but words that

appear in many documents, such as “very,” have
less discriminative power.

In this work, we use the simplest definition of
term frequency: tf(t, d) is a raw count of the
number of times a term t appears in a document
d. Inverse document frequency is the inverse loga-
rithmic fraction of the number of documents that
contain the term from the set of all documents,
D. This gives the tf-idf value of t for a particular
descriptive document d: This gives:

tf-idf(t, d,D) = tf(t, d) · log N

|{d ∈ D : t ∈ d}|
Where tf(t, d) is the number of times a term t
appears in document d, N is the size of the set of
documents N = |D|, and |{d ∈ D : t ∈ d}| is the
number of documents in which the term t appears.

Paragraph Vector: Paragraph Vector is an unsu-
pervised learning algorithm that maps documents
into a fixed-length feature vector that is robust
against varying document sizes [9].

In the Paragraph Vector model, paragraphs and
every word in these paragraphs are mapped to
vectors P , and W respectively. We calculate the
un-normalized log-probability vector of P .

y = b+ Uh

Here yi is un-normalized log-probability of a word
in the vector. U and b are softmax parameters, and
h is a vector formed by a concatenation of word
vectors, W and paragraph vector, P .

Prediction of the ’next word’ in the context or
’topic’ of the paragraph is achieved using a softmax
classifier. Fixed length sliding window is applied
to choose contexts. Here, w1,w2, ...., wT are the
sequence of words that are getting trained.

p(wt|wt−k, ...wt+k) =
eywt∑
i e

yi

Model tries to maximize the average log proba-
bility,

1

T

T−k∑
t=k

log p(wt|wt−k, ...wt+k)

We consider the output of trained model that is
a fixed length dense vector, as in a bag of words
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model but retains the predictive power of a more
semantically informed model. Training is performed
using gradient descent with backpropagation. The
trained paragraph vector represents the “topic” of
a document, and has shown good performance for
predicting other terms that may be found in that
document. Paragraph Vector maps every document
to a point in fixed-dimensional space irrespective
of their varying description size; empirically, 100
dimensions gave sufficient representative power.

IV. APPROACH

We build on previous work on jointly training
visual classifiers and interpretations of descriptive
language to develop a semantic representation of
the visual characteristics of objects. [10, 14]. The
focus of this paper is the identification of suitable
negative data points for training those visual clas-
sifiers, which we do using a two-step approach:
first, choosing discriminative terms for which to
train classifiers; second, using semantic similarity
between descriptions of objects to find dissimilar
examples to serve as negative training examples.

More specifically, we treat all of the descriptions
of a particular object, concatenated, as a “docu-
ment” associated with that object. We use tf-idf to
find the most important, discriminative terms for a
particular document, and attempt to train classifiers
associated with those terms; positive examples for
classifier learning are the images people described
using that term. We choose negative examples for
that classifier training by learning a paragraph vec-
tor for each document, and using cosine similarity
to find the most distant paragraph vectors. Our pre-
liminary results show that this model is sufficient to
train color, shape and object classifiers successfully.

A. Data Corpus Collection

Our data set contains 72 objects, divided into 18
classes. (Classes included both food objects, such
as ‘banana,’ ‘cabbage,’ and ‘carrot,’ and children’s
blocks in various shapes, such as cylinders and
cuboids.) We took 3-4 RGB-D images of each
object from a variety of angles. We extracted RGB
features extracted from the color channel and used
kernel descriptors [1, 7] to extract shape and object

features from the depth channel. Kernel descrip-
tors [1, 7] model size, 3D shape, and depth edge
from the depth channel and experiments show that
it significantly enhances the quality of object clas-
sification results. Figure 2 shows an example image
for each class in the data set.

Fig. 2. Sample RGB images for each class in the dataset, as
taken with a Kinect2 camera and presented to Mechanical Turk
annotators.

To obtain descriptive language, the RGB images
were posted on Amazon Mechanical Turk, and
users provided short descriptions. A total of 3055
descriptions were collected, an average of 42
descriptions per object. All descriptions of a single
object are concatenated into an unordered “doc-
ument” describing that object. Documents range
from 200–450 words, and our corpus contains a
total of 19,947 unique words. A short list of stop
words is stripped from the documents, and the
remaining word are lemmatized as “terms”.

B. Positive Token Formation

In order to select tokens for which to learn visual
classifiers, we first employ tf-idf to find discrimi-
native terms from the set of descriptive documents.
We calculate tf-idf for all terms and pass it through
an activation function to learn how important the
term is to that document. Empirically, we found
that selecting terms with a tf-idf value above a
threshold of 10 produced the best values. This
gives the most significant labels that are effective
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representations of object instances for which to
create visual classifiers.

golden
cylinder
square
apple
potato
cuboid
yellow
carrot
tomatoe
rom
isgreen
lime
blue
lemon
peach

purple
cherry
wedgeshaped
circle
long
cob
wedge
orange
plantain
white
banana
red
semicircle
head
archshaped

triangle
corn
triangular
mango
tomato
isyellow
cylindrical
cucumber
half
cabbage
ear
arch
brick
building

cababage
potato
cube
rectangular
eggplanet
item
husk
green
rectangle
eggplant
cylindershape
cheese
block

Fig. 3. The set of the top-scoring terms for each object
in our data set. 57 terms are shown because there was some
overlap across objects. The results reflect errors made by human
annotators; for example, ‘tomato’ and ‘tomatoe’ are both present.

For each term, all images that have been de-
scribed using that term become positive examples
for training a classifier. From the original 19,947
words used to describe 72 objects, 230 tokens were
selected for classifier training (see Figure 3 for
some examples of positive tokens selected.) Some
examples of words that scored very low in the
process include: ‘picture’, ‘colored’, ‘look’, ‘color’,
‘image’, ‘object’, and ‘laying’.

C. Negative Instance Selection

Once a set of images has been selected as positive
examples, the second step is to find the most
semantically distant objects in the data set to serve
as negative examples by comparing the objects’
descriptive documents. First, the set of objects that
share no mutual positive terms is selected. For this
we calculate the paragraph vector (described above)
for each document. These vectors are then com-
pared using cosine similarity.The greater the angle
between vectors, the more semantically dissimilar
the documents are. From this similarity matrix, we
choose the most dissimilar instances as negative
instances (see Figure 5 for an example).

D. Classifier Learning

In order to test the effectiveness of our approach,
we trained three different types of classifiers: color,

shape, and object type. The first two are suitable for
the current problem and have been used in previous
work on this topic. [14] In addition to that, type-
of-object classifiers demonstrate the possibility of
learning more complex concepts.

Because an unsupervised learner has no way of
knowing which of these categories a word actually
refers to, multiple classifiers must be trained over
the positive and negative groundings for each term.
We use RGB and RGB-D images based on the
objects to extract color, shape and object features,
and then apply tf-idf to find positive labels and
PV-DM combined with cosine similarity to find
dissimilar objects in the language corpus.

We use the most dissimilar objects as
negative instances while learning. When the
learning system encounters a previously unseen
‘‘label’’, it creates visual classifiers named
‘‘label’’-color, ‘‘label’’-shape, and
‘‘label’’-object, which are trained using the
color, shape, and object feature type of the positive
and negative instance. Objects with the same label
are added as additional positive samples to this
classifiers. Training is performed using logistic
regression.

V. RESULTS

In this section, we discuss the performance of
negative sample selection and the quality of the
resulting classifiers. In this initial work we present
only representative results, rather than a complete
analysis of results. For example, Figure 4 shows
the selected and rejected terms for one of the
objects in our dataset. Nonetheless, we believe that
our approach of choosing negative samples exhibits
promising performance.

A. Examples of Negative Label Selection

One of the primary contributions of using the in-
stance paragraph vector model is that it addresses a
major failing in the common bag-of-words model:
it considers the ordering and semantics of words,
but still allows vector-space-based comparisons.
Figure 5 illustrates the cosine similarity of the
same “banana” object from our data set with other
objects. Similarity between pairs of documents is
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Fig. 4. Positive and negative labels of an object after tf-idf
threshold-based filtering. Terms in green will be associated with
a classifier that takes this object as a positive example; terms in
red, which fell below the tf-idf threshold, will not.

the cosine of angle between the vectors in the vector
space. From the figure, we can see that the banana
is most similar to another, different banana, which
was described as green; then, in descending order,
to a yellow cylinder, a lemon, and so on, down to
the least similar object, a short red semicylinder.
Images of the most distant objects can then be used
as negative samples for training the classifier.

Fig. 5. Cosine similarity of the paragraph vectors of descriptive
documents. Vectors represent individual objects, and the angle
between vectors denote the similarity of those descriptions. The
figure illustrates the similarity of other documents with the
descriptive document for one of the bananas in our data set.

Figure 1 shows the selected positive and negative

images of some labels. We could see that labels
“carrot”, “rectangular”, and “red” were able to
choose perfect negative instances for the learning
model. The label “like” is also perfect considering
that it does not semantically mean anything in
language grounding. Results show that paragraph
vector model was able to select good negative
samples from the corpus. Instance paragraph vector
approach gives good performance as our negative
selection model; we evaluate visual classifier per-
formance with these chosen negative samples.

B. Quality of Trained Classifiers

The quality of the grounded language model—
the learned model of the relationship between lan-
guage and percepts—is a product of the association
between language tokens and the trained visual
classifiers. Ideally, attribute descriptions should be
associated primarily with a single classifier with
good predictive power. Our evaluation was con-
ducted on our corpus of images and descriptions,
and classifiers associated with strongly informative
terms were trained as described above. Cross vali-
dation was used for testing.

Color: Our color classification results show good
results on color labels (see Figure 6), although there
is some overfitting resulting from the relatively
small set of objects. For example, the potato and
eggplant objects were frequently described as being
on a white background, leading to conflation in
classifiers denoted by ‘white.’ One possible solution
for the demand of extensive annotation is using effi-
cient active learning techniques. Previous grounded
language acquisition experiments that exercise ac-
tive learning techniques [14] have shown promising
outcomes in reducing annotation efforts without
compromising classification accuracy.

The “orange” and “red” classifiers has substan-
tial overlap, in part because users described both
tomatoes and carrots using both terms; in addition,
polysemy had a negative impact, as the term “or-
ange” can be color or object.

Shape: Training shape classifiers on small RGB-D
images is significantly more difficult than color, in
part because the shape of an object from different
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Fig. 6. Associations between color classifiers created for
keywords (y-axis) and ground truth (x-axis). Only a small subset
of representative classifiers are shown, since one is created for
each keyword in the corpus. The classifiers associated with color
words have strong predictive power, as does the color classifier
associated with the token “tomato.” The visually uninformative
word “building,” by contrast, does not have any strongly per-
forming classifiers associated.

angles can vary considerably. While still performing
well, the quality of the results is somewhat less. A
few sources of complication included the tendency
of annotators not to describe the shape of common
objects; cucumbers were frequently referred to as
green, but never as cylindrical. In addition, certain
terms, such as rectangular, were overused. Figure 7
shows the results of some selected shape classifiers.

Fig. 7. The confusion matrix showing performance of shape
classifiers for objects in shape categories (x-axis) against selected
words (y-axis). The confusion between rectangles and arches is
a product of our data set, as the blocks usually described as
arch-shaped have a rectangular top.

Object: Object classifiers, which are intended to
determine the class an object belongs to, are trained
using a combination of color and shape features.
While our object classification has good results on
our data set, this is partly due to the strong influence
of color in classification; both the toys and the food
objects in our data set tended to be primarily a

single strong color.

Fig. 8. Associations between object classifiers created for
keywords (y-axis) and ground truth objects (x-axis). Only a small
subset of representative classifiers are shown, since one is created
for each keyword in the corpus.

Overall: The overall goal of this work is to allow
robots to improve their ability to learn semantic
representations of their perceived environments, us-
ing unconstrained natural language as the training
signal. While not a complete metric, one way of
considering whether this work makes progress to-
wards that goal is to verify that the most obvious
terms for the intended ground truth have been
identified as having important semantic relevance,
and how accurately the classifiers associated with
those terms perform on the complete dataset. By
this metric, we find that all of our ground truth
labels have been discovered; classifier performance
is shown in Figure 9.

VI. CONCLUSION AND FUTURE WORK

While a number of different approaches have ex-
plored how to acquire semantic representations of
perceptual data, the need for negative natural lan-
guage exemplars recurs throughout the literature.
Our results demonstrate that using semantic simi-
larity measures on corpora of mixed language and
perceptual data can be used to automatically iden-
tify terms that should be considered as candidates
for learning groundings for, and to select negative
examples automatically for training classifiers that
instantiate the semantic meaning of perceptual data.
The most immediate steps for this work include
running a more thorough evaluation of the results
by using Mechanical Turk to evaluate the quality
of each step of the process: finding positive labels,
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blue:
green:

orange:
purple:

red:
white:

yellow:

0.995
0.947
0.720
0.499
0.844
0.772
0.918

arch:
cube:

cylinder:
rectangle:

triangle:

0.532
0.590
0.725
0.621
0.649

banana:
cabbage:

carrot:
corn:

cucumber:
eggplant:

0.942
0.879
0.887
0.922
0.615
0.646

lemon:
lime:

orange:
potato:

tomato:

0.777
0.936
0.921
0.715
0.926

Fig. 9. Average performance of the classifiers associated with
each word shown in cross-validation. In general, color classifiers
(top left) perform the best; the outlier, purple, reflects the color
differences between the objects described as purple (typically
eggplants, red cabbage, and plums). Shape classifiers (top right)
perform worst, stemming from the fact that people do not provide
a shape description as often as the other two classes. Classifiers
for object types (bottom left and right) perform well in general.

selecting positive and negative examples for classi-
fiers, and evaluating the behavior of those classifiers
on held-out data sets.

One possible baseline to determine the perfor-
mance and effectiveness of the model will be to
compare this negative sample selection model with
a traditional model that randomly chooses objects
which are not explained by the same keywords. In-
cluding questions to explicitly ask about the dissim-
ilarity of objects would also be a valid measurement
scenario that can be incorporated in human-robot
interaction trials.

In future, our intention is to extend this work to
a more varied set of objects, additional kinds of
classifiers, and complex visual classification tasks,
as well as to apply the identification of negative
grounding examples to ongoing work on grounded
language acquisition tasks. Ultimately, the goal is
to have robot systems that actively learn from
descriptions of objects and instructions, from non-
specialists, after deployment into complex, novel
environments. Being able to learn from natural
human descriptions will be an important part of that
process, and this work demonstrates initial steps

towards solving an outstanding problem in doing
so.
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