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Abstract—Natural language has emerged as a pow-
erful, intuitive interface for robot-human communica-
tion. There has been substantial work in recent years
on grounded language acquisition, in which paired
language and sensor data are used to create a model
of how linguistic constructs apply to the perceivable
world. While powerful, this approach suffers from
the need for extensive natural language annotations.
In this paper, we describe an initial pilot of a system
that uses active learning to solicit annotations from a
human interlocutor. Our results suggest that using
active learning reduces the number of annotations
necessary to learn such groundings, providing a strong
justification for building a more robust version of
such a system, and suggest some insights into human
requirements for usability.

I. INTRODUCTION

As robots have become safer and more capable,
the idea of deploying them in situations where they
interact with non-specialists (e.g., in homes, hospi-
tals, or schools) has become more realistic. Natural
language is an intuitive and widely understood way
of conveying instructions and information. How-
ever, building appropriate language models for the
wide range of real world situations and users is
an enormous challenge, particularly in the area
of grounded language, where language refers to
objects and actions in a particular robot’s perceptual
world. In order to address this, it has become
increasingly apparent that an interactive learning
system where robots learn from unstructured com-
munication with untrained users is necessary.

In previous work, we have demonstrated using
unconstrained language paired with sensor and ac-
tuator data to support learning about novel object
attributes (e.g., attributes that had no representa-
tion in the underlying language model until en-

countered) [12, 13]. While effective, these efforts
depended on large amounts of user annotation—
probably more than could be comfortably supplied
by a single user. In order to accomplish the longer-
term goal of learning groundings for descriptions of
objects from end users, it is necessary to (1) reduce
the amount of annotation necessary to learn about
objects and (2) better understand the constraints on
obtaining natural language descriptions from users.

We treat language descriptions as labels for novel
visual percepts [12]. This pilot expands on our
previous work in two ways: first, language is ob-
tained from direct, real-time interaction with the
user, rather than using a corpus of labels collected
beforehand; second, the robot uses the performance
of the visual classifiers to query the user proactively
about unclear terms. In this way, the users (anno-
tators) serve as oracles who provide labeled data.
We present data about their experiences using the
system, both with and without interactive learning.

The problem of learning the connection between
novel percepts and novel language has been ex-
plored before. In this paper, we focus on the possi-
ble contribution of active learning to that problem,
rather than difficulty of the vision problem. Our re-
sults show that interactive labeling reduces labeling
costs and increases user acceptance compared to
unguided labeling, and support the idea that actively
seeking language labels is an important area of
future work for robot language acquisition.

II. RELATED WORK

Active learning, in which a learning system
chooses data points to label, can allow for more
efficient learning and better performance as well as
more natural interaction [4, 8]. Using active learning



in human-robot interactions presents its own chal-
lenges, raising issues not only of what questions to
ask, but when and how to ask them [2, 18, 21].

In robotics, active learning is often encountered
in learning from demonstration, in which a human
tutor provides an example of an action [3], or
in cases where the learning is used to indirectly
support interaction [7, 9]. Our work is more similar
to Kulick et al. [10] in that the active learning is
used to directly guide the acquisition of language;
however, we refer to different world objects and do
not limit the system to yes/no questions.

The language learning component of this work
fits into the category of grounded language acqui-
sition, the integrated learning of language and envi-
ronment [14]. This approach has led to successes,
especially in using weakly supervised learning to
support situated language learning over large cor-
pora of data [20]. ‘Environment’ can take many
forms, from implicit meaning in navigation instruc-
tions [6], to searching on [19] linguistic descriptions
of spatial elements in video clips.

This work is an extension of Matuszek* et al.
[12], in which a joint model of language and
perception is used to acquire groundings for lan-
guage describing the perceived characteristics of
objects, allowing for learning words that have no
pre-existing counterparts in an underlying formal
grammar. However, we use a simpler bag-of-words
model, which has been shown to be effective for
this problem [20, 13].

III. APPROACH

A joint model of language and perception is
used to acquire groundings for language describing
the characteristics of objects in the environment.
When new words are encountered, visual classifiers
are created and trained on the perceptual context;
for example, the classifier associated with “red” is
trained as the word is encountered in conjunction
with objects. We improve the efficiency of that
process by using active learning [5], letting the
robot preferentially seek data points that reduce
uncertainty.

To evaluate efficiency and usability, a small num-
ber of people were asked to teach the robot about

Fig. 1. The learning cycle. In the manual labeling case,
the annotator is always asked to describe objects (red dashed
line); when performing interactive labeling, the system prompts
the annotator to either describe the object, or—in the case of
a sufficiently trained classifier—to briefly verify the object’s
classification (blue dotted lines).

colors, either with or without active questioning
about labels (see Figure 1). We describe these
experiments and present preliminary results.

A. System

We use the widely-available Microsoft Kinect v2
RGB-D sensor, which is part of a custom mobile
manipulation platform. For this work, only the
sensors and speakers are used. When an object
is placed in the robot’s workspace, RGB-D infor-
mation from the sensor is input to the learning
system (as in Figure 1). The learning system uses
this information to update its knowledge of objects.
Such learning occurs iteratively for several objects.

We conducted a pilot with ten participants, who
were asked to describe a series of 20 objects,
divided into two cases (see Figure 1). In the first,
which we call manual annotation or manual la-
beling, participants were asked to describe every
object. In the second, interactive labeling, the robot
tried to classify the objects; depending on the con-
fidence of classification, the user either provided
a description or was asked a verification question
(“Is this an 〈attribute〉 object?”, to which the user
answered yes or no).

This verification question is much lower overhead
than requesting a label, while still allowing the user
to correct system errors. In future, we expect trained
classifiers to have sufficient confidence to do away
with verification questions entirely.



B. Classifier Learning

An RGB-D point cloud is extracted from the
Kinect v2 sensor based on the scene. The object is
then separated from the background using k-means
clustering [11] on the depth data, and correspond-
ing visual features—in this case, RGB values—are
extracted. All processing is done using the Point
Cloud Library (PCL) [17] in ROS [15]. For color
classification, kernel descriptors [1] corresponding
to color attributes are used. We use a bag-of-words
model to find appropriate linguistic tokens, using
keywords extracted using the Rapid Automatic Key-
word Extraction (RAKE) [16] library.

A group of classifiers (one per keyword) is used
by the system. Each classifier uses logistic regres-
sion with three inputs corresponding to RGB values.
A threshold of 0.7 is used for the output of a
classifier to describe a positive or negative sample,
chosen empirically based on early studies.

Learning proceeds by periodically generating and
training the classifiers, and updates the parameters
for language and vision. A new classifier is created
on encountering a previously-unseen keyword, and
trained using the object in view as a positive datum;
further objects described with that keyword serve as
additional positive samples.

C. Grounded Language Acquisition

A joint model of language and perception is used
to acquire groundings for language describing the
characteristics of objects [12]. Upon encountering
an unfamiliar language token, the system creates
visual classifiers trained on percepts (for the vi-
sion system) and associated with tokens (for the
language system)—in this case, keywords. Visual
classifiers and language learning are treated as a
single joint model with a shared learning objective.
The result is a set of visual attribute classifiers that
identify objects in the scene referred to in language.

As training data is added, the joint model obtains
an expanding group of classifiers. Repetition of
object attributes reinforces classifiers related to a
corresponding keyword. In this way, keywords that
actually refer to attributes of an object are likely
to collect positive examples consisting of similar
percepts (similar colors, in this example). Such

classifiers (e.g., associated with the word “red”)
will therefore gain predictive power. Classifiers with
good predictive power then collectively form the
grounded language model, while classifiers with re-
duced predictive power (e.g., associated with “its”)
can eventually be pruned.

The model is joint in the sense that
each classifier, when created, is associated
with a language token, for example,
new-classifier-called-‘‘red’’. This
is a deliberately simple classification problem, as
the goal of this work is to determine the possible
positive contribution of active learning, rather than
to solve a novel vision problem.

D. Interactive vs Manual Labeling

Our ultimate goal is to incorporate active learning
into the joint learning model described, to reduce
manual labeling and to gain information about the
desired characteristics of an interactive learning in-
terface. We are using a simple model of information
gain: choosing an object at random (by the human
annotator) and, if it cannot be classified accurately
by existing trained classifiers, request a description.

When an object is chosen, the model attempts to
classify its visual attributes with existing classifiers;
if any of the classifiers gives a probability above a
threshold, the system prompts the oracle (annota-
tor) for confirmation and moves on, although it is
flexible enough to accept any additional description
about that object the oracle might wish to give
at this point. If the object is new to the system,
none of the classifiers indicate a probability above
the threshold, or the system’s classification is not
confirmed, the human annotator would be asked to
provide a description, which is immediately added
to the model. The learning system uses logistic
regression to calculate confidences.

IV. LEARNING PERFORMANCE

In this section, we report on the performance
of the trained model using manual vs. interac-
tive labeling. While small sample sizes prevent
this from being definitive, we find that interactive
labeling—in which an annotator is asked to provide
descriptions only for objects that cannot already



Fig. 2. Associations between classifiers created for keywords (top row) and ground truth colors (leftmost column). Only a small
subset of representative classifiers are shown, since one is created for each keyword in the corpus. The classifiers associated with
color keywords have strong predictive power. There is evidence of overfitting (e.g., the lack of yellow triangles in the data set);
classifiers for objects of specific colors (such as banana) have more power than classifiers for general terms like “thin.”

be classified—shows consistent improvement over
manual labeling.

A. Quality of Vision/Language Model

The quality of the final grounded language
model—the learned model of the relationship be-
tween language and percepts—is a product of
the association between language tokens and the
trained visual classifiers. Ideally, attribute descrip-
tions should be associated primarily with a single
classifier with good predictive power.

The evaluation was conducted on a corpus of 240
distinct RGB-D images of 50 objects, or scenes. 200
images were used to train color classifiers, and 40
images were used for testing. Results are reported
on four colors because the other colors had too few
instances to be divided into training and test data.

Figure 2 shows the accuracy of learned classifiers
on objects described as being certain colors. Clas-
sifiers for color keywords are strongly predictive on
objects that are those colors. Because of the sim-
plicity of objects used, some overfitting occurs (e.g.,
the classifier named “banana” has some predictive
power on yellow objects). Classifiers corresponding
to keywords which are not associated with colors
(such as “half”) have generally low confidence.

B. Accuracy and Annotation Effort

The evaluation was conducted on a corpus of
225 distinct RGB-D images of 45 objects, which
we categorized into six rough color groupings. 125
images were used to train color classifiers as de-
scribed in Section III-B, with a held-out set of 100
objects for testing. Figure 3 shows the accuracy of
the trained classifiers on the test set as the size of the
training set is increased. Results vary substantially

by participant, reinforcing the belief that additional
training by individual end users may be beneficial.

The largest source of errors in perception system
was the variation in shades of colors per color
contained in the training data—blue objects varied
more in actual color than red, for example. The next
largest class of errors is overfit to the training data
based on the small set of objects. Perception system
errors were largely between red/yellow and blue/-
green objects; we attribute these to a combination
of lighting conditions and the variation in shades of
colors learned by classifiers.

Fig. 3. Number of objects correctly classified in a held-out test
set of 100 object/label pairs (y axis), per samples provided by a
human annotator (x axis). After an initial set of 14 samples (to
ensure the relevant classifiers exist), the active learning model
consistently outperforms naive manual labeling.

V. USER STUDY

The system was evaluated objectively for reduced
labeling with an interactive system. We also con-
ducted the pilot (described above in Section III-A)
with a small number of annotators to learn about



ease of use, acceptance, frustration and some gen-
eral concepts with different kinds of labeling. 1

A. Manual Labeling Effort

In our study, we trained classifiers and collected
descriptions on 225 visual scenes (a scene being a
single RGB-D view of one object). As described
in Section III-A, the interactive learner attempted
to classify objects in scenes as training progressed,
asking for descriptions only when needed.

Fig. 4. The number of annotations (y axis) used to train
classifiers on a certain number of visual scenes (x axis). In-
teractive labeling, which used classifier confidence to avoid
requesting descriptions of some scenes, was able to request 63%
fewer annotations than manual labeling. In the remaining cases,
verification questions were asked. All comparative user results
reflect these differences.

Overall, the system requested 84 descriptions, and
correctly classified 141 objects in scenes without
human labeling (see Figure 4), 37% of the annotator
effort that would be required to label all 225 scenes.

B. Comparative Study

In this user experience study, we asked the par-
ticipants to label ten items in each of two cases:
manual labeling (they describe each object), and
interactive labeling (they describe new or uncertain
objects based on prompts from the system).They
were then asked to provide their feedback on both
approaches. The survey questionnaire was designed
to measure comfort, efficiency, ease and accuracy
of the systems. The participants rated their prefer-
ence on a 5-point Likert-type scale, ranging from

1See http://tiny.cc/iral-al for a brief video example
of this interaction.

Strongly Agree to Strongly Disagree. A summary
of the results can be found in Figure 5.

Fig. 5. User study comparison of ease of use, willingness to use
the labeling system, and level of frustration associated with both
the interactive labeling method and the manual labeling method.

Because of the increased number of questions
asked, users found manual labeling slightly easier
to use than interactive labeling. Users also favored
interactive labeling when expressing their willing-
ness to use the system in future if a robot needs to
learn similar data.

Finally, frustration level with the system was
queried to determine the state of mind of partici-
pants using each method. For interactive learning,
only 10% (one user) was ‘dissatisfied’ and ‘very
frustrated’. Anecdotally, this user was reacting to
the system being “annoyingly polite,” e.g., wordy
and apologetic in its interactions. Demographic
difference may be a contributing factor in this case,
as other users expressed no annoyance.

Another source of frustration was the lag time of
the interactive labeling system; as classifiers were
trained, users had to wait as much as 30 seconds
for a response. User expectation of responsiveness
is high, especially when the surrounding world has
achieved remarkable progress in the field of robot
interaction.

C. General Questions

Users were asked some general comparison ques-
tions to know their preference about the robot sys-
tems. Each user was asked to express their preferred



TABLE I
QUESTIONS ASKED COMPARING INTERACTIVE vs. MANUAL LABELING AND RESPONSES.

Questions Agree Neither Agree
Nor Disagree Disagree

Teaching was easier with interactive labeling as opposed to manual labeling. 6 1 3
Humans learn much faster and more accurately compared to interactive labeling. 6 3 1
Comfort level with Interactive labeling was higher than that with manual labeling. 4 3 3
An interactive system is much more fun than a monotonous one. 8 2 0

system to teach robot. Most of the participants
preferred interactive labeling (see Table I).

VI. CONCLUSION AND FUTURE WORK

Ten objects cannot be considered sufficient for
experiments to determine comfort and ease of use,
and experimenting with more objects will help get
a better idea on the willingness of users to teach
a robot. Broadly speaking, however, these experi-
ments support the intuition that interactive labeling
will be more pleasant and more efficient, given
careful interface design. The results also support
the idea that actively seeking language labels can
lower human labor costs in teaching robots.

In future, this work will extend to much large
sample sizes, as well as incorporating active learn-
ing on a more ‘real world’ learning problem, in
which the labels to be learned go beyond color
to incorporate non-visual attributes (e.g., shape,
weight), and into object recognition. We plan to
incorporate active learning to establish spatial re-
lationships between objects, as difficulty of manual
labeling increases as the complexity of the symbolic
representation increases.

Additionally, we will utilize the entropy of the
classifier from the confidence estimate of the clas-
sifier as the classification deciding factor instead of
user input. We will not employ verification by user
if the classifier probability is too high for the object.
We also believe that incorporating multimodal in-
teraction, including speech recognition and gesture
recognition [13]. We also conclude that the user
expectations of speed and naturalness of interaction
are really high in case of an interactive system.

This work is aimed at demonstrating that incorpo-
rating active learning in the collection of data anno-

tation can reduce human labeling cost and learning
time, and improve user comfort level. We show that
a robot driven system can reduce manual labeling
costs on a small problem, and efficiently learns from
untrained users. While the presented system is in the
early stages of development, initial results show that
this is a promising area of research; as grounded
language acquisition is a fundamental problem in
human robot interactions, achieving the same level
of learning with less effort is a crucial target.

This work is aimed at demonstrating that incorpo-
rating active learning in the collection of data anno-
tation can reduce human labeling cost and learning
time, and improve user comfort level. We show that
a robot driven system can reduce manual labeling
costs on a small problem, and efficiently learns from
untrained users. While the presented system is in the
early stages of development, initial results show that
this is a promising area of research; as grounded
language acquisition is a fundamental problem in
human robot interactions, achieving the same level
of learning with less effort is a crucial target.
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