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ABSTRACT
The ability to transfer adversarial attacks from one model (the sur-
rogate) to another model (the victim) has been an issue of concern
within the machine learning (ML) community. The ability to suc-
cessfully evade unseen models represents an uncomfortable level
of ease toward implementing attacks. In this work we note that as
studied, current transfer attack research has an unrealistic advan-
tage for the attacker: the attacker has the exact same training data
as the victim. We present the first study of transferring adversarial
attacks focusing on the data available to attacker and victim under
imperfect settings without querying the victim, where there is some
variable level of overlap in the exact data used or in the classes
learned by each model. This threat model is relevant to applications
in medicine, malware, and others. Under this new threat model at-
tack success rate is not correlated with data or class overlap in the
way one would expect, and varies with dataset. This makes it diffi-
cult for attacker and defender to reason about each other and con-
tributes to the broader study of model robustness and security. We
remedy this by developing a masked version of Projected Gradient
Descent that simulates class disparity, which enables the attacker
to reliably estimate a lower-bound on their attack’s success.
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1 INTRODUCTION
Given an input 𝒙 ∈ R𝑑 and an associated label 𝑦 ∈ Y, we wish
to learn a model 𝑉 (·) such that 𝑉 (𝒙) = 𝑦. This is achieved using
gradient descent on a loss function ℓ (·, ·), and trained over a dataset
D𝑛 of 𝑛 samples to minimize the function

∑
∀𝒙,𝑦∈D ℓ (𝑉 (𝒙), 𝑦).

In this work, we are concerned with untargeted adversarial at-
tacks against the model 𝑉 (·). For evasion attacks specifically, an
adversary𝐴 will alter 𝒙 to create a new perturbed sample �̃� = 𝐴(𝒙).
This perturbed �̃� is similar enough to 𝒙 such that they should have
the same label, but instead the victim𝑉 (·) is fooled so that𝑉 (�̃�) ≠ 𝑦.
These attacks are surprisingly easy to accomplish. Just as our model
𝑉 (·) was trained by taking the gradient of the loss with respect to
model parameters ∇𝜃 ℓ (𝑉 (𝒙), 𝑦), the adversary can create �̃� by tak-
ing the gradient of the loss with respect to the input and attempting
to maximize the loss.

In the ideal circumstance, we would be able to defend𝑉 (·) in the
white box scenario, in which the adversary has perfect knowledge
of the model 𝑉 (·), including its parameters, and the training data
D. Another common scenario is the gray-box attack, where the
adversary 𝐴 has imperfect knowledge, and wishes to perform a
transfer attack.

In the transfer attack scenario the adversary 𝐴 does not know
what model the victim 𝑉 (·) is using or its parameters, and so they
construct a surrogate model 𝑆 (·). This surrogate can have a different
architecture, but is trained in the samemanner:

∑
∀𝒙,𝑦∈D ℓ (𝑆 (𝒙), 𝑦).

This gives the adversary their own model 𝑆 (·), which they attack
to produce an adversarial sample �̃� . The hope, which has held in
practice, is that attacks against the surrogate 𝑆 (·) generalize to the
victim 𝑉 (·) and successful fool it so that 𝑉 (�̃�) ≠ 𝑦. This is how
most works have proceeded in the study of this problem, which
allows both the surrogate and victim to share the knowledge of the
exact same label space (i.e., task) and data, as outlined in Figure 1.
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Figure 1: Solid circles show the label space, which in pur-
ple shows that the victim and surrogate use the exact same
label space (perfect intersection). Dashed circles show the
data used in training,which again is a perfect union (orange).
This is the standard world view explored in prior works.

The contribution of our work is the recognition of an inconsis-
tency in this threat model: in what realistic circumstance does the
adversary 𝐴 know nothing about the victim’s model 𝑉 , yet has ac-
cess to the same set of class labels Y and in non-query scenarios
even the exact training dataset D? We believe this to be an un-
realistic threat model for many real-world scenarios, yet it is the
predominant version of the transferable attack scenario studied
[12, 13, 30, 34, 42]. As companies develop and label their own cor-
pora, we should expect that the adversary is likely to know less
about the data than they would the model type.1 Not all ML mod-
els will be exposed to external entities, and may be used entirely
for internal purposes within a company. This shared conditioning
of the surrogate and victim being trained on the exact same data
makes for an unrealistic evaluation.

Instead, we study a new version of the transfer attack scenario
summarized in Figure 2. For simplicity we will allow the surrogate
𝑆 and victim 𝑉 to use the same architecture when using different
datasets DS and DV each with 𝑛 samples. Since it is common
practice to still use publicly available data, we will study scenarios
where ranging from no overlap (DS ∩ DV = ∅), partial overlap
(|DS ∩ DV | < 𝑛), and complete overlap (DS = DV ). In addition
we note that companies may not fully expose all of the classes
they might detect, so we will also study how the degree of overlap
between different output spaces Y𝑆 and Y𝑉 in the same fashion.
In doing so, we discover that the lack of shared underlying data
can significantly reduce the success of transfer attacks from the
surrogate 𝑆 (·) to the victim𝑉 (·) in unexpected ways, as it does not
correlate with the degree of overlap in the way one may intuitively
expect. This makes it difficult for the adversary to determine the
likelihood an attack succeeds, and thus to plan said attack. We also
show how state-of-the-art adversarial training can actually help
improve the attacker’s success rate due to a kind of over-fitting.
To restore behaviors to an easier to understand and interpret set
of patterns, we develop an augmented “masked surrogate” attack
that the adversary can use which removes the variance caused by

1Many companies will publish and discuss the types of models they use and develop,
but they rarely share their labeled data.

Figure 2: In a transfer attack where the adversary attacks
their own surrogate model 𝑆 (·) in order to evade a victim’s
model𝑉 (·). We study two factors that impact the attack suc-
cess. The overlap between the dataDS used to train 𝑆 (·) and
DV used to train 𝑉 (·) (dashed lines) exists in the sub-space
of the overlap in label output spaces (solid lines) 𝑆 (·) :→ YS

and𝑉 (·) :→ YV . These two factors may vary in their degree
of overlap, and data may have no overlap.

imperfect class overlap, making it possible for 𝐴 to again attack
victim 𝑉 (·) with confidence.

To help motivate this problem, consider the example of pain in a
medical context. A hospital using a machine learning model to try
and detect different types and levels of pain from facial expressions
can be useful for triage and patient care[3, 8, 19, 26, 28]. It would not
be queryable by outsiders to attack, but patients engaging in drug-
seeking behavior2 would desire to attack such a system [18, 32]. An
adversary could realistically create their own dataset, but because
there are many different medical taxonomies and definitions around
pain [43], they would not likely know the exact set of labels used
by their victim.

The rest of our paper is organized as follows. In section 2 we will
discuss related work which has used the unrealistic version of our
threat model. In section 3 we contribute a rigorous threat model
for this unrecognized, and realistic scenario, and a new masked
PGD attack for the threat model. In section 4 and section 5 we
contribute an extensive empirical study of the threat model showing
that current adversarial methods and intuition do not hold under
uncertain class and data overlap, making attacks unreliable. Our
new masked PGD will restore the attacker to an intuitive behavior
that allows effective attack against 𝑉 (·). Finally we will conclude
in section 7.

2For their own use or illegal re-sale. The later group potentially well funded and
motivated.



2 RELATEDWORK
While adversarial attacks on machine learning algorithms have re-
ceived increased attention in the last few years, they have been a
research area for over a decade [7] and have proven to be challeng-
ing to defend against [9]. The threat of adversarial attacks applies
broadly to many classification use cases, for example malware de-
tection [24] and facial recognition [38], as well as to regression
tasks [29]. In this work, we are interested in the transfer of adver-
sarial attacks. There are two larger groups that transfer attacks
have fallen into based on whether they use queries against the vic-
tim 𝑉 (·) or not. Our work extends the study of threat models that
do not query the victim.

Many have looked at the transferability of adversarial attacks
that do not rely on querying the victim model [14, 15, 22, 34, 42, 45,
46] and built theory of how to improve transfer success rate [12].
All of these cited works assume, or do not discuss, the adversary
having perfect knowledge of the victim’s classes (i.e., YS = YV ).
The few works that have recognized that shared data (DS = D𝑉 )
is an unrealistic assumption have not studied how the degree of
data overlap may impact transfer success, and instead replace the
assumption with the case that the adversary knows how much
of their data overlaps. Prior work [11, 14, 16] modified gradient-
based attacks to optimize transferability between models without
examining data overlap. These works used mostly 10-100 attack
iterations, and found that more iterations reduced the impact of
their results. When using 250 to 1,000 as we do in our work, we
found these approaches had no impact on results (e.g., see Figure 8).

Our work contributes the realization that unknown class and
data overlap is a likely scenario, and that if you can’t query your
victim you may not have certainty about class overlap either. Some
have intentionally made sure there is no data overlap, but not tested
the impact of no or partial overlap [40]. As far as we are aware,
we are the first to study the impact of class overlap and the first to
study how the degree of data overlap impacts transfer success, and
the interaction of these two factors.

Many black-box attacks query the victim [12, 30, 31] with new
data points to get them labeled. This means that each label pair
in the surrogate’s corpus 𝒙, 𝑦 ∈ DS is really 𝒙,𝑉 (𝒙). While the
attacker is limited based on the number of queries considered, they
are implicitly gaining information about the entire training setDV
that was used to create 𝑉 (·). The query based black-box attacks
are realistic but do not cover all circumstances (e.g., models used
internally or which do not provide immediate/direct feedback).

One of the only works we are aware of the recognize the adver-
sary may have varied degrees of knowledge or overlap with DV
was by [41]. Their study however was focused on only poisoning
based attacks, and did not explore the broader impact of the degree
of overlap |DS ∩ DV |/max( |DS |, |DV |). Instead they choose to
allow the adversary to know 70% of the training corpus or 100%. In-
stead we will test a spectrum of overlaps of training data and class
labels.

To the best of our knowledge, no work has yet considered that
the adversary may not know the exact set of classes YV used by
the victim, and so must use an overlapping but different set of labels

YS for their surrogate though the scenario is realistic. Determin-
ing what family of malware (i.e., the class) a given executable be-
longs to is important functionality, yet all anti-virus products have
wildly different sets of labels they recognize with different defini-
tions, which are constantly changing as new families are detected
[35–37]. The malware example is particularly motivating because
it involves a real-live adversary (the malware author) who actively
wants to avoid detection. Our model of unknown class overlap is
also common to industry practice. Many companies will have al-
pha/beta tests or “phantom” deployments of hidden features for
testing, which could include new class labels that have not been ex-
posed. Even under normal circumstances, companies do not always
disclose all classes they recognize or precisely how many exist.3
Real-world production models can have millions and even 100 mil-
lion classes in use [10, 21], making it impractical for an adversary
to likely model all available classes. While we do not test to this
extreme, we believe this provides further evidence that assuming a
perfect model of the output space YV is not always realistic, and
thus worthy of our study.

3 APPROACH
As recommended by [6] we first make explicit the threat model
that defines our adversary’s goals, capabilities, and knowledge. We
assume there is a victimmodel𝑉 (·) that theywish to provide altered
inputs �̃� = 𝐴(𝒙) such that 𝑉 (�̃�) will produce incorrect predictions.
The adversary is able to send altered inputs �̃� to the victim, but
is not able to observe a direct or indirect response. The adversary
does not know the training data DV used by the victim, or the
specific classes– it is only inferred guesses or availability that they
should overlap to an unknown degree (as we have established in
section 2, this is realistic for cases of malware, medical, and other
applications). The adversary has the capability to perturb inputs
by up to 𝜖 under the∞ norm, such that ∥�̃� − 𝒙 ∥∞ ≤ 𝜖 by attacking
their own surrogate model 𝑆 (·) trained on an independently built
corpus DS with an independent label set YS . Pessimistically we
assume the adversary’s surrogate model 𝑆 (·) uses the exact same
architecture as the victim’s 𝑉 (·) (given wide re-use of “backbone”
networks such as ResNet, this is a reasonable assumption). The
adversary needs to meet a minimum attack success rate of 𝑝% for
their attack to be viable, and only has one chance to launch their
attack campaign4.

Our restrictions on the adversary’s knowledge of the data and
classes may seem extreme. This requires the adversary to invest
time into understanding their victim, building their own corpus
and expected label set, and then producing perturbed inputs to
send to the victim. This scenario is realistic to many situations,
and occurs in biometric recognition [2], medicine [18, 32], and
malware detection [1, 17, 33] are all domains where the specific
class labels may vary between users but have predictable high-
level goals, and data is tightly held (for privacy or competitive
advantage), and models are often kept private or not fully exposed
to users/consumers.

3e.g., Clarifai’s current documentation gives a lower bound and no comprehensive list
for the number of classes available for many of their models. This behavior is relatively
common amongst commerically available APIs.
4The assumption being a failed attack alerts the defender, who can thus make changes
or react in some unfavorable way, that is ultimately a detriment to the attacker’s goals.



Within the threat model, we assume that there are varying levels
of intersection between the data points of DS and DV . Within
this analysis we make splits based on a number of shared classes
for image classification Y = 𝑦1, 𝑦2, ..., 𝑦𝑁 where each model is
trained using classes a subset of Y, the surrogate having Y𝑆 and
the victim Y𝑉 . Where the shared classes of YS ∩ YV = YO

represents the overlap in shared classes. We observe various sizes
of intersection/overlap |YO | within the work respective to the size
of |Y|. Because we test with varying levels of class overlap, each
model (𝑉 (·) and 𝑆 (·)) will have half as many output classes. For
example, CIFAR-100 tests would only have 50 classes so that we can
vary the number of shared classes from 2 to 100% without changing
the number of classes.

Within that intersection of shared classes, we split the intersec-
tion further by dividing the data points of classes YO based on a
varying number of data partitions such that the data points DYO

into subsets such that DS ≠ DV . Thus the surrogate model is
trained on DS = DYS ∪ DYO and the victim model is trained
on DV = DYV ∪ DYO . We analyze where there is no overlap in
shared data points but shared classes exist DS ∩DV = ∅, the case
in which there is partial overlap of data points |DS ∩ DV | < 𝑛 ,
and finally the case in which there it total overlap DS = DV .

To better study the impact of |DYO |/max( |DS |, |DV |) the shared
data ratio between the surrogate 𝑆 (·) and victim 𝑉 (·), we will not
use all of the original training data. Instead, each model will be
trained only on half of the original samples (e.g., using 30,000 out
of the 60,000 training samples of MNIST). This is done so that we
can test a shared class overlap of {0, 25, 50, 75, 100}% while keeping
the total training size constant, eliminating it as a factor of varia-
tion. For example, 0% overlap (i.e., |DYO |/max( |DS |, |DV |) = 0),
would mean all of the original data is used, half by the surrogate 𝑆
and the other half by the victim 𝑉 . For 100% overlap only half of
the original data is used by both 𝑆 (·) and𝑉 (·). This way all models
trained have a corpus of the same total size. A consequence of this
design choice is our results are not directly comparable with prior
studies on the same datasets, since our models are trained on only
half as much data.

Once both models are trained on their respective datasets, we
find an adversarial attack 𝐴 in which the input 𝒙 is perturbed to
be �̃� = 𝐴(𝒙) for the surrogate model 𝑆 (·). We then transfer this
attack 𝐴 to the victim model 𝑉 (·), which 𝐴 is not optimized for.
The success of such a transfer attack is measured by the original
accuracy of the victim model on the shared held out test data DYO

subtracted from the new accuracy after 𝐴 perturbs DYO , 𝐴(DYO ).

success = accuracy(𝑉 (·),DYO ) − accuracy(𝑉 (·), 𝐴(DYO )) (1)

This metric allows us to examine how dependent the adversarial
attack 𝐴 is on the data of the surrogate DS . Common thought
from the machine learning community would assume the closer
the overlap in data distribution there is between DS and DV the
more successful the attack will be. We examine how well this initial
hypothesis holds with empirical evidence in the following section.

3.1 Impact of Adversarial Training
We examine a variation of the threat model in which both the
surrogate model and the victim model are hardened to adversarial
attacks during training. Each model then is exposed to adversary
examples �̃�𝑆 generated by 𝐴𝑆 for model 𝑆 (·) to have 𝑆 (�̃�𝑆 ) ≠ 𝑦

. The same process is used for 𝑉 (·) to emulate the victim also
attempting to safeguard the model. Under normal study this results
in improved accuracy under attack, at some variable decrease in
accuracy on clean samples. Our results will show this behavior does
not hold under our new threat model.

3.2 Removing Class Uncertainty
Finally, to explore the dependence of classes being present within
the surrogate model YS , we introduce a modified PGD attack, Al-
gorithm 1, that runs 𝑇 additional iterations with a randomly gener-
ated mask (𝑀) over the logits of the class output. Randomly mask-
ing classes makes it such that the adversary cannot rely on any
“easy” classes (e.g., two different breeds of dog) to obtain success-
ful attacks. This operation is in a manner mechanically similar to
Dropout [39] and Expectation over Transformation (EoT) [5]. Un-
like Dropout our goal is to make the attacker more robust, and un-
like EoT we are not differentiating through a defence of the victim
(EoT’s original purpose), but instead circumventing the adversary’s
uncertainty about the victim through simulation. We then compute
the delta 𝛿 per the PGD attack𝑇 times and then average it to have a
more generalized delta, 𝛿𝑎𝑣𝑔 , that will not be dependent onYS . We
believe this to be a better strategy for attacking the victim model
with no guarantee of any of the surrogate model classes YS being
present in victim’s YV .

Algorithm 1:Masked PGD Attack: N number of iterations
for PGD, S number of examples in dataset, T number of
mask iterations
for 𝑛 = 1...𝑆 do // Samples to attack

for 𝑖 = 1...𝑁 do // PGD iterations
𝛿𝑎𝑣𝑔 = 0
for 𝑗 = 1...𝑇 do // Mask iterations

𝑀 = random mask ; // Sample a mask for

logits

𝑥𝑝 = 𝑓𝜃 (𝑥) ·𝑀 ; // Apply mask, M to model

output
𝛿 = 𝛿 + 𝛼 · sign(∇𝛿 ℓ (𝑥𝑝 + 𝛿,𝑦))
𝛿𝑎𝑣𝑔 = 𝛿𝑎𝑣𝑔 +max(min(𝛿, 𝜖),−𝜖)

𝛿𝑎𝑣𝑔 = 𝛿𝑎𝑣𝑔/𝑇

3.3 Computational Considerations
A single model on CIFAR-100 takes on average 1.25 hours to train
on a single graphics processing unit (GPU). For each experiment we
must train the surrogate model and the victimmodel from scratch to
preserve control for data overlap. Each with a change in the number
of classes shared and data, for CIFAR-100 looking at 5 number of
classes each at 5 different percentages of data shared creates 25
trains of the surrogate model and then 25 trains for the victim
model. This totals in 50 total trained models. This totals to 62.5



hours for each training experiment. Due to the random selection of
the shared classes and shared data, we run each experiment 5 times
to account for outliers and average the performance. This increases
to 312.5 GPU hours in training. This is not including the total time
it takes to find and run the attack on the victim network, which
in the next section we choose to take an extremely high number
of iterations to properly capture the potential of the attack for our
threat model. The attack cost for our masked experiments take
another ≈ 3,700 GPU hours due to the iterative masking process.
The results presented constitute months of our entire compute
capacity.

Performing the same study, with multiple runs to average the
behavior, would take an estimated ≈ 40, 000 GPU hours (≈ 4.5
years), is simply beyond our resources and financial means. We
have results for a reduced and single-run (no averaging) result
on ImageNet in section 6 as a spot check, which supports our
overall conclusions derived from the more tractable CIFAR and
Mini-ImageNet datasets.

4 EXPERIMENTS
We examine the success rate of transferring an attack to a victim
model 𝑉 (·) from a surrogate model 𝑆 (·) with varying levels of
shared tasks/data. We define tasks as shared-classes and data as the
percentage of images within that intersection of shared-classes that
both models are trained on. The training data is split based on the
number of shared classes leaving the non-intersecting classes to be
split between the two models. From the shared class data, we then
split based on a percentage shared. We then train two networks on
each of these subsets.

Within our extended experiments, we focus on Mini-ImageNet
since this dataset is larger, in terms of both classes and data, and
diverse in the type of images and classes. We find this to be a reason-
able size for our extensive computational costs of experiments com-
pared to ImageNet (see subsection 3.3). Two variations are tested,
one in which both surrogate and victim models are adversarially
hardened during training and a novel variation of projected gra-
dient descent (PGD) attack in which we mask classes to increase
generalization of transfer.

In summary we conduct the following experiments:

• An analysis of success of transfer from surrogate model to
victim model at various levels of shared classes and data
points.

• Analysis of the effects adversarial hardening during training
of both models has on the success based on varying levels
of shared classes and data points.

• A novel adversarial attack meant to generalize without re-
lying on a single class present in the surrogate model using
masking based targets.

4.1 Standard Adversarial Transfer Attack
We use ResNet architectures [20], a ubiquitous backbone architec-
ture, for all experiments. We choose to match the size of model to
the size of dataset being learned. We used ResNet-18 for Fashion-
MNIST, ResNet-50 for CIFAR-10, and Wide ResNet-50 for CIFAR-
100. Each network is then modified to have a final linear layer that is

only the size of the number of classes per model. We used a ResNet-
18 model for Mini-ImageNet for computational cost considerations.

The models are trained using Adam optimizer [23] with a learn-
ing rate of 0.0004 selected on empirical results, with varying batch
sizes based on dataset: 12 for Fashion-MNIST, 12 for CIFAR-10, 128
for CIFAR-100, and 128 for mini-ImageNet. The number of epochs
for each model were 10 for Fashion-MNIST, 20 for CIFAR-10, and
200 for both CIFAR-100 and mini-ImageNet. For CIFAR-100 and
Mini-ImageNet we used a learning rate decay at epochs 60, 120,
and 160 with gamma 0.2.

Once each model is trained on the respected data-subset a per-
turbation input �̃� = 𝐴(𝒙) is found using projected gradient descent
(PGD) [25] by attacking the surrogate model 𝑆 (·) with 𝐿∞ normal-
ization and an 𝜖 of 0.3 with a PGD step size of 0.01. Following best
practices we use as many PGD steps as computationally feasible
[4], in our case 1,000 steps (though we found 100 sufficient in most
cases). Then we apply that computed perturbation, 𝐴 to the victim
model,𝑉 (·). We measure the success of the transferred attack based
on varying combinations of shared-classes and percentage shared.
Our results will show that having less shared data has a non-trivial
impact on attack success rate, and that fewer shared classes has a
large impact on the adversary’s estimate of attack success rate and
could lead to over/under confidence based on a computationally
constrained attacker. We showcase this standard threat model with
varying levels of attack with a small step size (see Figure 3). This
allows us to broadly view the purpose of this experiment to exam-
ine the effects these factors have on transfer attacks. This example
demonstrates in greater fidelity the change in transfer attack suc-
cess rate as the percentage of shared classes and data change and
interact in non-linear ways. We note that the specific nature of the
pattern changes from one dataset to the next, andwe do not have the
computational capacity to repeat this high fidelity testing for each
dataset. Our Masked PGD attack helps alleviate the uncertainty of
what behavior will occur by removing the impact of the number of
shared classes, and results in a consistent and smooth behavior that
more shared data leads to high attack success rate (which is not
true under standard PGD for all datasets, including Figure 3 itself).

4.2 Adversarial Hardening
Within the threat model, we also have to account for the victim
model creators attempting to mitigate the success of attacks, and
attackers trying to create more robust attacks [34]. We do this by
performing adversarial training on both 𝑆 (·) and𝑉 (·), and conduct-
ing the same grid of transfer attack testing, to determine how viable
transfer attacks are when the adversary has the limited visibility of
our specified threat model. Due to the number of train/test runs,
we use the work of [44] for computationally efficient hardening of
both networks during training. Within this method, the network
is trained using a randomly initialized fast gradient sign method
(FGSM) attack which was found to be as effective as the PGD attack.
Our prior expectation is that this would hamper the adversary, but
our results show the drop in attack success rate is smaller than we
might have expected.



Figure 3: This figure shows a fine-grained experiment run for a sub-sample of ImageNet using standard PGD. Examining the
attack success at such scale allows greater visualization of the variance we see at a smaller scale and the relation between the
two factors. With multiple runs per cell to account for the variance, this experiment took approximately 3,168 GPU hours.
This dataset shows high variance when the number of shared classes ≤ 25.

4.3 Masked Transferred Attacks
The masked PGD attacks were too expensive to run to 1,000 it-
erations, so only 250 iterations were done instead. This number
appears to still be reasonable, and was tested by running the stan-
dard attack for only 250 PGD iterations and no difference in results
were observed. We note that in the masked PGD case, each itera-
tion requires 100 sub-iterations (averaging over the random masks
𝑀) for an effective total of 250,000 gradient calculations. Therefore
we feel this decrease is a reasonable change. We will show that this
masked attack removes the number of shared classes as a source of
variance, allowing the attacker to confidently estimate their attack
success rate.

5 RESULTS
Our results shine light on behaviors outside of the intuition given
the factors of shared data and classes. A priori one would expect
that an attack’s success should drop when class and data overlap
decrease due to a lack of information, and that adversarial training
would improve the victim’s accuracy under attack [4, 27]. Our
results show that these intuitions do not hold in practice: there is a
dataset dependant pattern of correlation between class/data overlap
and attack success rate, and adversarial training of the victim can
counter-intuitively improve the attacker’s success rate. These make
it difficult for both attackers and defenders to reason about their
degree of vulnerability. This adds a human-factor within the threat
model of attack uncertainty minimization. Our masked PGD attack
Algo. 1 restores the attacker to amore consistent behavior, removing
the variability with respect to class overlap and restoring standard
expectations to the attacker’s success rate decreasing as the amount



of data shared with the victim decreases. Assuming an attacker
would not engage in a campaign with high uncertainty, this allows
the attacker (and thus, defender) to better quantify and determine
their success or risk respectively. For readers viewing, we have used
red for success values, blue for standard deviation, and green for
differences between two methods of attack or training.

5.1 Standard Adversarial Transfer Attack
Looking first at the smaller dataset behaviors (CIFAR-10 and Fash-
ionMNIST), we see an overall trend of higher success when there
is more overlap in both data and classes (as originally expected).
Within both however, there was an interesting dip in success with
50% shared data and 2 classes before rising again. Within CIFAR10,
the model actually had more success with 0% overlap opposed to
100% overlap. Fashion-MNIST however had more consistency with
success increasing as overlap increases.

For CIFAR10 (Figure 17a) the correlation coefficient between
number of shared classes and success was 0.6578, for Fashion-
MNIST (Figure 17b) it was 0.8213. These values point to a similar
relationship, however the peak within sharing 50% of the classes
in the CIAFAR10 data skewed this relationship. For the correlation
coefficient for the percentage of data shared, CIFAR10 had -0.4310
and Fashion-MNIST had 0.3238. The negative coefficient is counter-
intuitive going against the a priori expected trend on the small
datasets, but as we look at larger datasets with more classes the
behavior will regress further.

Figure 4: Success of transfer attack dependent on variations
of shared classes and percentage of data shared for CIFAR-
100.

CIFAR100 (Figure 4, Figure 5) showcased more nuance to the
threat model, where the attacker’s success improved as the number
of shared classes decreased with an unexpected negative correlation
of -0.3068, with shared data now positive at 0.8118 (in contrast to
being negative for the very similar CIFAR10). Given the intermix of

adversarial attacks and out-of-distribution issues colliding, we do
not yet have robust theory to explain or understand this. But the
result led us to examine the variance of the success between runs
for smaller class overlaps. The variance in Figure 5 showed that
smaller class overlap had increasingly high variance with less over-
lap. The higher variance as shared classes decreases is intrinsically
important to the attacker: it means they have increased uncertainty
of what any individual attacks performance will be. The variance is
also not large enough to explain why fewer shared classes improve
the attacker’s average success rate.

Figure 5: Standard deviation of success of transfer attack be-
tween 5 runs of each variation of shared classes and percent-
age of data shared for CIFAR100.

Finally we look at Mini ImageNet (Figure 6) which has 100 classes
similar to CIFAR100. In this case, the data resolution is larger (32 ×
32 vs. 84 × 84) and more diverse. At first glance it’s result appear to
match a priori expectations, shared classes have a positive corre-
lation with attack success of 0.2170 and shared data a correlation
of 0.8231. Again we observe the edge cases of intermediate shared
percentages performing better than their extremes (e.g., 50% shared
classes and 75% shared data has a 35% transfer success, higher than
all neighboring values).

The variance of Mini-ImageNet results (see Figure 7) matches the
same trend in variance fromCIFAR-100: There ismore variancewith
lower overlap in both number classes. This is the only consistent
and “intuitive” behavior that occurs in this threat model, but is a
pyrrhic win at best for the attacker. The higher variance may lead
to greater success, but the attacker cannot rely on this to occur,
and so must account for the variance in results and select from
the lower tail of the distribution to make a “safe” decision about
whether or not their attack will be successful.

For the results in this section, we start to gain an understanding
of the behavior dynamics within this threat model. While we are
unable to observe the intuition of a linear relationship for both
factors, we are able to identify the nuance of variance that makes



Figure 6: Success of transfer attack dependent on variations
of shared classes and percentage of data shared for Mini-
ImageNet.

this threat model unique and challenging. The cause of these non-
intuitive behaviors is not known, and a matter of future works given
the intermix of adversarial and out-of-distribution issues that blend
together. Independently both issues have little existing theory, and
we are aware of none that exists for the union of these problems
we study.

Figure 7: Standard deviation of transfer attack dependent on
variations of shared classes and percentage of data shared
for Mini-ImageNet.

Figure 8: Difference between MI-FGSM attack and PGD at-
tack in terms of success in attack. Lighter means PGD had
more success and darkermeansMI-FGSMhadmore success.

We also examine work crafting attack objectives meant to im-
prove transfer to a victim model. We evaluated the standard PDG
attack against Momentum Iterative Fast Gradient Sign Method
(MIFGSM) [14]. We found within our comparative results on mini-
ImageNet (see Figure 8) that the method offered small success per-
centages over PGD for transfer in some cases. We defer to future
work for examining transfer variants of attacks and their perfor-
mance within this framework.

5.2 Adversarial Hardening
When training both the surrogate model and the victim model with
adversarial examples included we saw two main takeaways. 1) the
vulnerability of the hardened model in most cases was not as robust
against attacks as the vanilla trained model. 2) we find that there
is an interesting behavior profile in which the hardening is most
effective with class overlap opposed to data overlap.

We find it valuable to frame the performance within the context
of the difference between the vanilla model and hardened model’s
accuracies when under attack, as shown in Figure 9. This distinction
sheds light on the trade off between robustness and accuracy that
previous work faced. The correlation coefficients for these values
on the Mini-ImageNet dataset for number of shared classes is -
0.5537. We show both the success (Figure 14) and standard deviation
between runs (Figure 10) when hardening is applied. This indicates
that as the attacker and victim share fewer classes, the adversarial
training becomes increasingly detrimental to the victim’s goal of
correct predictions while under attack, dropping by as much as 5.9
percentage points. The correlation with respect to shared data is
only 0.0136, indicating that having the exact same data or no shared
data is of comparatively little impact on the outcome.

The normal behavior is that adversarial training is purely ben-
eficial, and usually the state-of-the-art defense against attacks (if



Figure 9: The difference between vanilla and hardened mod-
els’ accuracy. Overall the hardened model has lower accu-
racy in all cases with the least being complete overlap, the
only context adversarial hardening has been studied.

Figure 10: Standard deviation between success of runs of
transfer attack on adversarial hardenedmodel.We again see
the same level of variation as with the non-hardenedmodel.

within your computational constraints). However, implicit within
the framework of adversarial training is that the attacker and de-
fender have the exact same classes, the same data distribution, and
thus the same manifold on which the data and attacks lie (though
potentially different estimates of that manifold). Our results indi-
cate that adversarial training can thus “overfit” to the specifics of

the current data. When attacks are generated from a highly differen-
tiated manifold (i.e., low % shared classes) they exhibit behavior and
values far outside what the defender could have generated using
adversarial training, and thus, does not generalize to the attacked
inputs. This places even greater importance on research into prov-
ably secure defenses for the defender’s confidence, but such study
is outside the scope of our current work (and compute resources).

5.3 Masked PGD Attack
Our results thus far have demonstrated that current intuitions and
expectations on the behavior of adversarial attacks break down
when there is a discordance between attacker’s surrogate and the
victim models. This makes reasoning for both perspectives difficult,
and computationally demanding. Instead, we show that our Masked
PGD attack can provide more stable estimates of attacker success
that almost returns to the expected behaviors. The attack success
rate is shown in Figure 12, where the variance with respect to the
number of shared classes is almost entirely eliminated, and what
little remains follows expectation that fewer shared classes results
in a lower transfer success rate. We also see the exact same behavior
profile occur on CIFAR100, as shown in Figure 11, and that the
variance in results match continue to remain low when all classes
are shared (Figure 13). We are unable to compare exhaustively or
perform as many iterations, but we also see the same general trend
on the full ImageNet corpus which is shown in section 6, which has
greater variance due to the extreme computational expense which
prevents us from doing more than one trial, where our CIFAR100
and Mini-ImageNet results are the average from multiple trials.

Figure 11: Success of masked transfer attack dependent on
variations of shared classes and percentage of data shared
for CIFAR100.

Wenote that the extreme expense for these experiments is caused
by needing multiple runs of multiple difference combinations of
shared class and data overlap percentages. In practice, because our
Masked PGD attack restores behavior expectations, the attacker



Figure 12: Attack success with masked PGD attack depen-
dent on variations of shared classes and percentage of data
shared for Mini-ImageNet.

Figure 13: Standard deviation of transfer masked-based at-
tack dependent on variations of shared classes and percent-
age of data shared for Mini-ImageNet.

or defender can simply perform the Masked PGD attack for only
the case of low shared classes and 0% shared data. This provides
attack and defender with a reasonable and reliable lower-bound
for the attacker’s probability of success without the ≥ 20× cost of
evaluation for each possible combination.

Applying our Masked PGD during adversarial training is not
as trivial, and in our initial experiments introduced significant de-
creases in stability and accuracy, as well as out-sized computational
cost (the number of PGD iterations, multiplied by the number of

masked iterations). Our results thus provide a means for better
estimating transfer success in our threat model, but not yet a mech-
anism for improved defense/robustness. This is critical for future
work as our results will show that adversarial training reduces de-
fender robustness in this threat model.

Figure 14: Transfer success with adversarial hardening dur-
ing training. Overall we saw lower accuracy and then less
success. We chose to include the differences in accuracies in
the paper to show that the cost of robustness only drastically
assisted with the assumption of total overlap.

6 INITIAL IMAGE NET RESULTS
The exploration of our results on an ImageNet scale is of extreme
cost. Further understanding the results at the scale of ImageNet
would also be valuable beyond the current contributions. We choose
to document the initial results which are incomplete, necessarily
so because they are too expensive for us to complete without ex-
ternal assistance. Our hope is that these incomplete results will
help to illustrate the high cost for the adversary in attacking and
understanding their likelihood of success as the number of classes
and data increases, but also the open problem of estimating these
properties for both the adversary and defender for future work.

Initial experiments were run on ImageNet with 2, 50, and 100
shared classes (2%, 5%, and 10% of all ImageNet classes) each with
0%, 25%, 50%, 75%, and 100% shared data percentages. Comparing
to our experiments (Figure 15, Figure 16) with CIFAR100, we saw
large variance between runs with lower number of shared classes.
This may be a factor within these initial results as well as we saw
the most variance at 2% of the shared classes in CIFAR100.

These experiments were run parallel on a DGX v100 server with
four 32GB GPUs. With the runs for 2, 50, and 100 shared classes
taking 76, 144, and 164 GPU hours respectively. The increase is due
to the number of data points that are removed with cutting the
number of classes to create equal training data amount per model.
For the masked attack that requires more compute, the GPU hours
were 396, 476, and 584.



Figure 15: Success of transfer attack dependent on variations
of shared classes and percentage of data shared for partial
ImageNet.

Figure 16: Success of masked transfer attack dependent on
variations of shared classes and percentage of data shared
for partial ImageNet.

These numbers account for single runs in which the variance
cannot be measured like previous analysis on smaller datasets. Due
to this, we can assume that each run would need to be run 5 or
more times to analyze this variance. Based on the early averages,
we estimate in GPU hours this would take an estimated 2,200 GPU
hours (assuming linear relationship) to complete one round of 5
class step and 5 percentage step experiments. With running each
iteration 5 times to measure variance, it would be 11,100 GPU hours.

With the masked version of the attack we estimate 5,980 GPU hours
based on early results with a total of 29,900 GPU hours to analyze
variance between runs.

We foresee scaling these experiments on a large dataset such as
ImageNet to be a considerable engineering contribution in itself.
Crucially, introducing the security analysis paradigm of the inter-
section between shared classes and shared data points itself shows
promising results on smaller datasets.

7 CONCLUSION
We have elucidated a data-centric threat model where the adversary
cannot query the victim, butmust still transfer evasion attacks using
a surrogate. Many prior works have implicitly used this model, with
the unrealistic setting of the adversary knowing all the exact data
used by the victim. This model is applicable to many real-world
situations, and we have shown for the first time the asperity of
attack success rate as the amount of shared data and classes vary.
Attack success rate and correlations change sign depending on
dataset used, and adversarial training can actually reduce defender
success, making it difficult for attacker and defender to estimate
overall success. Our new Masked PGD attack removes the variance
with respect to shared classes, and restores an intuitive behavior
to results across all tested datasets. This allows the attacker to
confidently estimate attack success rate.

Considerable work still remains in fully and more accurately
modeling real-world threat models under imperfect information
and observation. In particular our work has taken a first step by
sub-sampling existing classes, but more complex partial intersec-
tion of victim vs surrogate classes is likely in real world scenarios.
The large computational cost to study these scenarios due to the
intrinsically stochastic nature of class overlap also needs address-
ing. In particular this impacts the feasibility of adversarial training,
which loses significant utility in our testing.
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Figure 17: Success of transfer attack dependent on varia-
tions of shared classes and percentage of data shared for two
smaller datasets.
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