
Measuring Equality in Machine Learning Security Defenses: A
Case Study in Speech Recognition

Luke E. Richards
lerichards@umbc.edu

University of Maryland, Baltimore
County

Pacific Northwest National
Laboratory

USA

Edward Raff
raff.edward@bah.com

University of Maryland, Baltimore
County

Booz Allen Hamilton
USA

Cynthia Matuszek
cmat@umbc.edu

University of Maryland, Baltimore
County
USA

ABSTRACT
Over the past decade, the machine learning security community
has developed a myriad of defenses for evasion attacks. An under-
studied question in that community is: for whom do these defenses
defend? This work considers common approaches to defending
learned systems and how security defenses result in performance
inequities across different sub-populations. We outline appropri-
ate parity metrics for analysis and begin to answer this question
through empirical results of the fairness implications of machine
learning security methods. We find that many methods that have
been proposed can cause direct harm, like false rejection and un-
equal benefits from robustness training. The framework we propose
for measuring defense equality can be applied to robustly trained
models, preprocessing-based defenses, and rejection methods. We
identify a set of datasets with a user-centered application and a
reasonable computational cost suitable for case studies in measur-
ing the equality of defenses. In our case study of speech command
recognition, we show how such adversarial training and augmenta-
tion have non-equal but complex protections for social subgroups
across gender, accent, and age in relation to user coverage. We
present a comparison of equality between two rejection-based de-
fenses: randomized smoothing and neural rejection, finding ran-
domized smoothing more equitable due to the sampling mechanism
for minority groups. This represents the first work examining the
disparity in the adversarial robustness in the speech domain and
the fairness evaluation of rejection-based defenses.

CCS CONCEPTS
• Computing methodologies → Machine learning; Speech
recognition; • Security and privacy → Human and societal
aspects of security and privacy.
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1 INTRODUCTION
Systems integrating machine learning (ML) introduce a new attack
surface for adversaries to take advantage of with regards to security.
So far, we observe that when developing defenses for these systems,
only a few works take any metric beyond the increase in aggre-
gated adversarial robustness into account. However, these defenses
are rarely considered when designing systems that interact with
humans. In a field where many defenses are already not adequately
evaluated, leading to a false sense of security [5], such user-centric
evaluations should also be at the forefront. In this work, we expand
on the measurement of machine learning security in a user-centric
manner.

We do this by examining the broader set of defenses being in-
troduced in machine learning systems and showcasing how they
can be biased and tested for such bias. These include defenses that
exist outside of the model weights themselves, like preprocessing
and postprocessing. We integrate concepts of parity studied by the
machine learning fairness community to measure the equality of
performance and outcomes resulting from such mitigation methods.
Through this intersectional view, we seek to aid the understanding
of the questions the community should ask when integrating vari-
ous defense defenses. Broadly, this question presents itself: who do
these proposed defenses work for when the system is under attack
and when not?

This comes at a time when machine learning security is being
recognized and reaching the maturity of deployment in the private
and public sectors [20]. While there exist many complex threat
models and levels of access in the literature, we examine impact-
based attacks where a defender would attempt to protect the system
from potential adversarial inputs. This type of attack represents a
level of access only at deployment time rather than the development
of the model. Commonly, the success criteria of an introduced
defense are high performance with and without the presence of
an attack. In this work, we expand this success criterion to ensure
the defenses work for many different user demographics with and
without attack and across the spectrum of attack strengths.
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Figure 1: A depiction of machine learning models operating
on a robotic arm accepting or correctly classifying speech
commands from some demographics (depicted by color) but
not others under attack by a theoretical adversary.

This historical monolithic sample evaluation method ignores a
recurring real-world phenomenon of inequality that such algorith-
mic methods may present. To address this, we first formally define
two metrics per demographic group, analyzing disparate defense
in robustness training and preprocessing-based and disparate false
rejection in popular proposed postprocessing defenses. We then
present the case for a more comprehensive evaluation of defenses
to account for their downstream implications, especially as such
defenses are deployed in critical safety environments.

The need for such a proposed evaluation can be exemplified by
imagining a manufacturing or delivery fulfillment scenario where
a worker attempts to give a speech command to a robotic operation
machine [38] (Fig. 1). Due to the safety concern of the incorrect ma-
chine operation being performed, which poses risks to humans, the
manufacturer added a rejection-based defense method to avoid act-
ing on adversarial commands. The defense offered here is rejection
or abstinence, a standard method introduced in defense literature
[10, 11, 30]. The speech command recognition model was never
tested with a diverse range of end-users and only reported general
accuracy for classifying attacks. As such, it systematically rejects
men in their twenties with Indian accents as the model perceives
them as potential adversarial examples.

Such a scenario can illustrate the dire need for an evaluation
standard, considering how rejection methods perform on various
end-users and how defenses add to the impacts that automated tech-
nology can have. Notably, to our knowledge, no existing work on
rejection methods has proposed or performed such an evaluation.
This comes at a time when society is becoming aware that many
have faced technology not recognizing them [4] or understanding
their speech. Here, the machine learning security methods add an-
other layer of complexity that requires analysis that the community
must integrate. There is a lack of benchmarks and taxonomy for
how such defenses can also present unfairness. We propose a frame-
work for analyzing this disparity within the taxonomy of current
defense types. In our case study on speech command recognition,
we showcase how such biases can be found in robustness training
(adversarial training, robustness architecture tricks, and data aug-
mentation) and rejection-based defenses (randomized smoothing
and neural rejection). We outline how the exact measurements can
also be applied to preprocessing, such as denoising.

Our contributions are the following:

• Relating parity measures for equality in adversarial defenses
in robustness training, rejection, and preprocessing defenses.

• Identifying two user-centric task-based speech command
recognition datasets with social labels that avoid the bias
of common fairness and robustness evaluations in gender
classification through facial features.

• Conducting two case studies across two speech recogni-
tion datasets: 1) on how robustness training methods impact
equality of defenses and 2) a comparison of rejection-based
methods and their fairness implications. Offering an empiri-
cal analysis of the complex relationships and straightforward
methods for increasing parity across age, accent, and gender
groups.

2 RELATEDWORK
2.1 Machine Learning Security
Machine learning security is a growing field [3] due to the prolifer-
ation of machine learning models in the wild that adversaries can
exploit. One of the most prototypical attacks is generating digital
adversarial examples to evade a classification model. Many attack
methods exist that attempt to be less computationally expensive
[35] and transfer better to other models [50]. Along with this, nu-
merous defenses are being proposed. These include adversarial
training, including adversarial examples in the training loop [19],
certifying models [10], preprocessing [48], and randomization [21].
While it is out of scope computationally to evaluate each of these
methods, we offer a framework such that current and future defense
methods can be evaluated with respect to fairness.

2.2 Algorithmic Fairness
Creating models and algorithmic systems that use them to make
decisions has been shown consistently to amplify and crystallize
social biases. Algorithmic Fairness encompasses a body of work that
addresses measuring and mitigating social biases instilled through
algorithms [34]. It would not do justice to this rich literature to
attempt to summarize all works in this space, so we focus on the
intersection between this body of work and security. Our work
focuses on using social labels to form subsets or slices of analysis.
Works such as [14] have pioneered this form of analysis to measure
better how machine learning models fail and metrics for acceptable
failure between subgroups.

2.3 Algorithmic Fairness and Security
Adversarial machine learning has been shown to be a beneficial
tool in learning less biased representations from data [45, 49]. On
the other hand, adversarial methods have been used to degrade
the fairness of a model purposefully. Poisoning attacks have been
introduced, which further social group disparity in equalized odds
between a privileged and unprivileged group [26, 40]. More complex
poisoning attacks exist that focus on damaging a subpopulation’s
performance while preserving all others [25]. Frameworks have
been introduced to attempt to understand the effect of poisoning
attacks where the adversary manipulates subgroup labels on accu-
racy and fairness [7].In contrast to our work, they examined how
current defenses against poisoning attacks perform. Works have
also investigated subverting social attribute re-ranking in image
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search by modifying the image database with targeted attribute
detection [17]. Other work has examined how similar test-time
poisoning attacks can be performed on clustering algorithms [9].

However, works have only rarely examined a model’s security in
relation to the fairness of social factors. Prior works have examined
adversarial hardening and fairness, defined as the vulnerability
of each class within a classification task [46] in completely class-
balanced datasets. Researchers have begun to address critical issues
of imbalanced datasets [44] but are still examining and remediating
this for only class level. Similarly, evaluations have been proposed
for measuring the robustness of data points through distance from
decision boundaries and reliance on high-frequency features [33].
Many have studied the trade-off when optimizing between fairness,
utility, and robustness as separate concepts, not intersectional ones
[8, 31, 36]. Still, these phenomena are studied in the context of class
fairness outside of social contexts. Our work begins to explore the
effects on real social groups rather than proxy class labels. The
metrics optimized for fairness within these works also include
accuracy, which does not account for all defense methods that can
have systemic rejection (as shown in Section 3.2). There have been
efforts to educate and include such intersectional analysis in the
community still along the axis of fairness and robustness separated
[47].

Our work most closely compliments the work of [32], which
introduces the concept of biased robustness. That is, a model has
different levels of robustness for sub-populations. Within their
work, they attempt to use adversarial examples as an upper bound
to measure the needed permutation for an evasion attack to be
successful. They defined a lower bound for robustness through a
randomized smoothing certification method. While this work is a
critical step for equal robustness, it audits models without a threat
model present. In our work, we expand upon this concept as we
acknowledge that a model creator would desire to take defense
steps to protect against adversarial attacks. We are then interested
in the inequality of these defenses concerning sub-population ro-
bustness. Current works have begun examining these trade-offs
between fairness and robustness in tabular data in a binary fairness
grouping when applying a single defense of adversarial training
[42]. A handful of works examine jointly optimizing models to be
fair and robust against data corruption in tabular data [27, 39].

We notemany of the works [17, 25, 32] in fairness and adversarial
machine learning focus on attribute classification through facial
recognition. Many of these focus on gender recognition in a binary
and from crowd-sourced perceived gender. While the motivation
is of deep importance to make machine learning models robust
for all, we suggest that gender recognition is in itself a biased task
and distracts from a proper evaluation of the usability of machine
learning models on a task by end-users [22]. We thus examine
speech applications, as the social attributes used to measure fairness
are not entangled with the task itself. We expand upon a dataset
that can be used for the future in Section 4.1.

2.4 Adversarial Attacks and Defenses in Speech
Domain

Our case study examines the equality of defense in the speech recog-
nition domain. Works within this space have shown that methods

used in the image domain can transfer to the speech domain in un-
targeted attacks [18] and targeted phrase attacks [6]. Novel defenses
within this space have been introduced through methods of data
compression [6], audio denoising/purification [41], and randomized
smoothing [48]. These studies view the dataset as a homogeneous
group and report solely dataset-level performance.

3 EVALUATION FRAMEWORK
We propose an evaluation framework to analyze the bias of com-
monly used defenses in machine learning against adversarial in-
teractions. We consider a model 𝑓 with parameters \ that takes
inputs 𝑥 and outputs 𝑦. Our threat model is an adversary producing
a modified input 𝑥 ′ to make the model 𝑓 exhibit undesired behav-
ior. Within our framework, we analyze the worst-case scenario
in which an adversary has both the model class and parameters
such that they can perform a white-box attack. This gives an upper
bound on the success of an attack and the potential vulnerabilities.

We extend the definition of vulnerability such that we have for
some subset of 𝑋 in the evaluation set labels 𝑆 that correspond
to different social sub-populations of humans. We define biased
defenses as there being systemic disparity protections under attack
or the rejection of clean examples from a subgroup 𝑠 ∈ 𝑆 .

We differ from prior work examining biased robustness in that
we assume that there is an adversary attempting to cause general,
unbiased attacks on our model, such that the model creator takes
steps to either 1) perform robustness training such that the model
should be robust against an attack or 2) reject the data point, in
which a function attempts to categorize whether the data point is an
attack. Primarily due to properties of robustness training, a model
may have parity of biased robustness but would not capture the
cost of overall accuracy for a subgroup 𝑠 . The introduced metrics in
the following sections help capture the trade-off between accuracy,
security, and fairness of security defenses.

3.1 Measurements of Biased Defense in
Robustness Training and Preprocessing
Defense Methods

Robustness training can take many forms. This may look like data
augmentation, adversarial training [29], large-scale pretraining
with datasets attempting to capture diversity [15], and a mixture
of all methods. Adversarial training offers the most well-studied
empirical defense to adversarial attacks [29]. This method involves
including attacked examples during training with the goal of clas-
sifying attacked examples correctly, 𝑓 (𝑥 + 𝛿) = 𝑦 , despite the
adversaries’ optimization of 𝑓 (𝑥 + 𝛿) ≠ 𝑦. The method for find-
ing such a 𝛿 has varied, with many proposals for faster and more
efficient methods [13].

We choose to use a strong iterative attack during training, pro-
jected gradient descent (PGD) [29]. It has been shown that most
methods attempt to approximate this optimization [16]. Learning
stability is critical in the accuracy-robustness trade-off, and thus
choosing larger attack budgets for 𝜖 can have weaker general and
attacked performance. Therefore we must choose a realistic ep-
silon value. However, to our knowledge, this is the first work that
examines how the fairness of this accuracy-robustness trade-off
disparately impacts real social groups in non-tabular datasets.
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We examine the differences between the regularly trained model
and models with various robustness defense defenses across the var-
ious sub-populations. We measure accuracy across sub-populations,
leading to measuring the Accuracy-Parity (AP). We examine the
disparity that such defense defenses introduce through ablation
studies. We note this metric should reflect the performance metric
for the task, such as word error rate (WER) for speech recognition
or equal error rate (EER) for speaker verification.

We measure the area under the curve (AUC) for samples of vary-
ing levels of attack budgets [𝜖𝑚𝑖𝑛, 𝜖𝑚𝑎𝑥 ] and the resulting accuracy
for a slice of data (𝑋𝑠 , 𝑌𝑠 ) where 𝑠 is the subgroup Eq. 1. This sum-
mary statistic of accuracy area under the curve accounts (𝐴𝑈𝐶𝑎𝑐𝑐 )
for the early loss of performance for subgroups when introducing
a defense. Here a lower 𝐴𝑈𝐶𝑎𝑐𝑐 indicates less protection under
attack. Rather than just measuring performance at attack budget,
this comparison better helps capture if stronger mitigation assists
with the range of adversarial attacks that could be deployed against
all users.

𝐴𝑈𝐶𝑎𝑐𝑐 (𝑋,𝑌, 𝑠) =
∫ 𝜖𝑚𝑎𝑥

𝜖𝑚𝑖𝑛

|𝑓 (𝑋𝑠 + 𝛿𝜖 ) = 𝑌𝑠 |
|𝑋𝑠 |

d𝜖. (1)

We are interested in understanding how these defenses cause
larger gaps in the defense from defenses. To address this, we intro-
duce the Defense Parity (DP) metric, which intuitively attempts to
capture the difference in defense performance across different sub-
groups of potential users. We define Defense Parity as the largest
difference between subgroups as we apply defense defenses. We
can extend this analysis for preprocessing defenses that attempt
to cleanse adversarial examples during test time. Such methods
attempt to solve 𝑓 (𝑔(𝑥 + 𝛿)) = 𝑦 by introducing a method 𝑔, which
can take many forms.

3.2 Measurements of Biased Rejection Defense
Methods

When accounting for the rejection of a sample through a mecha-
nism for classifying adversarial examples, the bias can be measured
using the false positivity rate (FPR). We measure the FPR for each
group 𝑠 ∈ 𝑆 as a clear metric for whether a single group is being
wrongly flagged more often as an adversarial attack. The simplicity
of this approach extends to not needing an adversary present in
evaluation, thereby limiting the technical implementation bias of
attack strength or method. This is particularly appealing as many
flaws can be found in how current defenses are evaluated [5, 16].

We define 𝑓 ∗ as a classifier that produces 𝑦 the class prediction
or an abstain signal (−1) given the probability does not reach the
threshold 𝛼 . We measure the AUC of FPRs for each group 𝑠 ∈ 𝑆

with corresponding data 𝑋𝑠 over threshold values [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥 ]
(Eq. 2). We then examine the FPR parity between subgroups by
measuring the largest difference between subgroups. These metrics
capture an ideal case with a stable increase as the security threshold
𝛼 increases for all groups 𝑠 ∈ 𝑆 . The goal is to decrease the𝐴𝑈𝐶𝐹𝑃𝑅

in general while increasing the parity.

𝐴𝑈𝐶𝐹𝑃𝑅 (𝑋, 𝑠) =
∫ 𝛼𝑚𝑎𝑥

𝛼𝑚𝑖𝑛

|𝑓 ∗ (𝑋𝑠 , 𝛼) = −1|
|𝑋𝑠 | |

d𝛼. (2)

Multiple rejection-based methods have been proposed within
the adversarial machine learning literature. However, no work so
far has examined this rejection mechanism in the context of social
subgroup bias. For our case studies, we compare two approaches
that use different methods for determining rejection. These metrics
allow us to understand first the general overall performance for
each subgroup and then the overall equality of defense for groups.
We note that high FPR parity (FPRP) with high false rejections
𝐴𝑈𝐶𝐹𝑃𝑅 may occur and may be desired if no alternatives exist.
Ideally, the algorithm should provide high FPR parity with low false
rejection scores per group 𝐴𝑈𝐶𝐹𝑃𝑅 .

4 EXPERIMENTS
In this section, we outline our experiments in the domains of key-
word recognition speech models across two datasets, AudioMNIST
and Common Voice Clips. Each dataset presents two security set-
tings where we train on known users and deploy for the same users
(AudioMNIST) and an unknown train/test population (Common
Voice Clips). We cover how we harden each model through adver-
sarial training configurations and choices. We then outline the two
methods we compare for rejecting users falsely for being detected
as adversarial attacks.

4.1 Datasets
Our desired qualities from a dataset are the following: 1) lightweight
and offering more minor compute costs for analyzing the equality
of defenses and their combinations, and 2) being a classification
dataset rather than a sentence-level automatic speech recognition,
which has a higher cost in computation and requires expertise to
train. Classification, in particular, has been the only task studied
in rejection methods. Adapting rejection methods would be an ef-
fort, and we opt to study existing defenses. The size of the datasets
should allow researchers to run more extensive exhaustive empiri-
cal experiments regarding computing-intensive methods such as
adversarial training and attacks. While datasets such as [23] offer
the criterion of socially labeled data, it is a more complex task than
speech-to-text. It is currently not computationally feasible to run
such factor analysis.

We stress that the standard classification tasks on non-tabular
data are typically facial trait recognition (gender, age, etc.) which
has a high existing social bias (Section 2.3). We argue speech recog-
nition is a more deployed and user-facing technology where users
of such a system would feel such discrepancies in performance
compared to attribute facial recognition typically being centralized
in use. We acknowledge that there are tasks such as facial recog-
nition for security access; however, the datasets are limited and
demographic labels are not readily available or provided by users
like those in the speech recognition datasets we propose.

Given these desired feature factors, we identify and showcase
how unequal defenses can present across two speech recognition
datasets. First, we examined a smaller dataset, AudioMNIST [2],
a spoken number dataset of numbers between 0 to 9. The dataset
comprises 60 users with self-identified ages, accents, binary native
speaker statuses, and genders. Most speakers are non-native speak-
ers with German accents, men in their twenties. For more details of
the distribution, we defer to the original paper. Each user has the
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same number of examples contributed to the dataset. We perform
a random train/validation/test split, ensuring each user has equal
representation and class representation with a ratio of 7:1:2.

To analyze the case where we do not have user guarantees and
a larger dataset, we use Common Voice Clips [1], which has single-
word phrases in English (retrieved June 2022, version 9). We focus
on the English subset, which has 15,115 training examples, 7,634 val-
idation examples, and 7,640 test examples. We remove all examples
of the command “Firefox”, leaving 13 classes total (“hey”, “yes/no”,
and the numbers 0 through 9). Common Voice allows contributors
to self-identify their age, gender (labeled as the typical term for
sex within the dataset), and accent. The gender ratio within the
train set is 25% female, 71% male, and 2% non-binary. There are 14
self-identified English accents in the train/test set. The majority of
the dataset is represented by those identifying as United States Eng-
lish accents (47%). Age distributions are heavily weighted toward
people in their twenties (42%).

While this lack of representation in the dataset is not ideal, this
is a typical case for datasets that drive models within speech today.
When examined at the intersection of gender, accent, and age, the
dataset contains 87 unique groups in the training set and 49 in the
test set. There are 14 unique groups not present in the training set
but within the test set. This introduces an interesting problem of
generalization to variations based on just the intersections that are
in the training set. The average length of a file is 0.0208milliseconds.

4.2 Biased Defense in Adversarial Robustness
Defenses Study

Our case study focuses on an efficient one-dimensional convolu-
tional network modeled after the M5 architecture [12]. Additionally,
we evaluate a version of M5 with a handful of tricks shown to in-
crease adversarial robustness by removing batch normalization [43]
and using a different activation function SiLU [24]. We name this
version M5-Tricks due to the bag-of-tricks approach taken (inspired
by [28]).

We down-sample from the original sample rate of 48 kHz to 16
kHz. We run ablations on adding data augmentation as prior work
[37] has found it essential for the accuracy-robustness trade-off.
We add Gaussian noise with a mean of 0 and varying standard
deviations of {0, 0.01, 0.05, 0.1} for augmentations. We do not per-
form augmentations during validation to ensure we choose the best
clean performance model. We perform ablation studies by training a
model with and without adversarial training and with and without
noise augmentation. For every study, we analyze the subgroups
of accent, age, gender, and if they are native speakers (only for
AudioMNIST).

For adversarial training of the model, we incorporate adversarial
examples crafted by a PGD attack with 𝜖 = {0.001, 0.005, 0.01, 0.1},
10 steps, and an 𝛼 = 𝜖/5). We add adversarial examples in the
same batch as our clean examples and optimize for the joint loss
with _ = .5, weighting both the adversarial and clean performance
equally. We perform the same evaluation on the validation set for
model selection to optimize for the model’s clean and attacked
accuracy.

For our Common Voice Clips studies, we analyze three classes of
models, the previously described CNN, a version of the M5 model

with a handful of tricks for adversarial training, and models with
and without noise augmentations. For our adversarial robustness
evaluation, we run attacks on all models with a range of attack
budget strengths 𝜖 = {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3} and 100 steps,
and 𝛼 = 𝜖/5. We verified 100 steps were sufficient for attack con-
vergence and enabled us to maximize our compute efficiency when
running multiple configurations of experiments. Since some con-
figurations have high noise augmentation and a high adversarial
budget, we remove any model from the analysis that performs
random guessing on the evaluation set.

In summary, we examine how the equality of defenses is im-
pacted by noise augmentation with varying standard deviations,
adversarial training tricks, and adversarial training with budgets.
Our resulting training runs leave us with 40 models for Common
Voice Clips and 40 models for AudioMNIST. Please see the appendix
for all models listed.

4.3 Biased Rejection in Defenses Study
We compare two proposed methods in the literature for their biased
rejection based on the measurement of false positivity rate. Unless
otherwise specified, we use the M5 model architecture and training
procedure outlined above without adversarial training or noise
augmentation.

For our first rejection method, we analyze the work of [30] by
doing neural rejection (NR). This framework assumes we have a
deep neural model 𝑓 with layers 𝑙0, ..., 𝑙𝑁 , each taking in the pre-
vious representation ℎ. It is also assumed that the final layer, 𝑙𝑁 ,
is a fully connected linear layer, which takes a learned representa-
tion ℎ𝑁−1. They propose learning a Support-Vector Machine (SVM)
with an RBF kernel using ℎ𝑁−1. Due to the SVM being a Compact
Abating Probability (CAP) model [30], we can use the probabili-
ties as a measurement from the training distribution. This allows
rejecting based on some threshold 𝑡 , assuming it is an adversarial
example. We measure the equalized odds by measuring the percent-
age per each sub-population in 𝑠 ∈ 𝑆 , which are rejected at varying
thresholds 𝜎 .

The second method we analyze within the framework is random-
ized smoothing (RS) [10]. This method has been widely adopted
as it offers certifiable robustness with a simple implementation.
Randomized smoothing can be defined as adding noise 𝜖 to the
classification 𝑓 (𝑥 + 𝜖) = 𝑦 where 𝜖 is drawn from 𝑁 (0, 𝜎2𝐼 ). The in-
tuition is that adversarial examples at test time would be ‘drowned
out’ with this noise addition, and the model is trained with such
noise. The original work offers a simple algorithm that includes a
reject from classifying task based on a Monte Carlo sampling. The
prediction classes for each data point with the same noise profile
addition are accumulated as counts. The top two class counts are
then used to parameterize a binomial test with a threshold 𝛼 .

We measure the number of examples from a subgroup that ab-
stained from classification for a smoothed model. Again, we mea-
sure the FPR of rejection in case no adversarial examples are present.
We use both studies’ areas under the curve as a summary statistic.
Again we assume that a lower 𝐴𝑈𝐶𝐹𝑃𝑅 indicates a lower FPR rate
for a subgroup. Our ideal case would be that given varying levels
of security (thresholds), we would see equal rejection levels per
subgroup (FPR parity).
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For our NR rejection methods, we use the method of [30], with an
SVMwith an RBF kernel. We use the final layer representation from
the models to train these rejection models that can also perform
classification. For our studies on rejection with RS, we train two
M5 networks with 𝜎 = .1. We choose models based on a held-
out validation set augmented with the same noise level. We then
use varying numbers of samples 𝑁 = {101, 102, 103, 104} for the
binomial test. This adds a parameter that neural rejection does not
offer, which we use to explore the implications of fairness of defense.
For both methods, we evaluate the 𝛼 values between [10−3, 100]
with a step size of 10−3. This gives us a high-fidelity view of the
behavior of false positive rejection across security levels through
the use of thresholds. We then compare the two methods on fair
rejection parity and report our findings.

5 RESULTS
We outline the results from our meta-analysis of mitigation and
their correlations to disparity for robustness training in Section
5.1. We then provide a comparison of disparity induced by neural
and randomized smoothing rejection-based methods. We analyze
results per dataset and then finish each subsection with a joint
analysis of results when comparing the different threat models of
user overlap.

5.1 Robust Training
We use Pearson correlation to measure how security defenses have
implications for the fairness of performance across subgroups. We
encode all defenses as a binary value (defense applied or not) and
report how these methods correlate with higher defense parity per
each subgroup. We then analyze how varying levels of defense
relate to defense parity. We find a complex relationship across
datasets dependent on the assumption of user coverage and dataset
complexity.

5.1.1 AudioMNIST. For our analysis, we found that 15 of the 40
(about 37% of the models trained) had a clean performance at ran-
dom guessing (10% accuracy). These models resulted from high
adversarial training budgets above 0.005 with various noise pro-
files. Since a model that makes random guesses can withstand any
amount of noise, we removed such models from the rest of this
analysis.

On the smaller dataset, AudioMNIST, which is balanced with
user contribution to training and test sets, we see that adversarial
training has higher correlations to parity for adversarial training for
accent and age groups (Figure 2). When applying the batch normal-
ization removal (tricks), we notice a positive correlation indicating
that removing the batch normalization mechanism increases dis-
parity across all groups. This has intuitive reasons since learning
the distribution of a closed-user dataset may be a viable method
for robustness compared to the performance of the same defense
in the open-user dataset (Common Voice Clips). Such results indi-
cate holes in the current evaluation of tricks in non-human user
settings. There may be more nuance in removing this feature re-
sulting in other better-defended models. The tricks have an average
clean accuracy of 0.937 ± 0.042 while the non-trick version had
0.601 ± 0.370, accomplishing the task. However, with this increase

in performance, we see more considerable performance disparities
trading off utility and robustness with fairness.

Figure 2: Pearson correlation coefficient between the pres-
ence of adversarial training (AT), AT bag-of-tricks (Tricks),
and noise augmentation to defense parity per group for Au-
dioMNIST.

Figure 3: Pearson correlation coefficient between adversarial
training budget and noise levels defenses and their resulting
defense parity for AudioMNIST. A negative value indicates a
stronger correlation with defense parity, and a positive value
indicates a stronger relationship to defense disparity.

Looking more closely at the level of disparity with relation to
the increase of noise or adversarial budget, we can see a similar
story to including either mitigation at all (Figure 3). For noise aug-
mentation level, we find there to be a weak or near zero (for gender
groups) correlation between noise level augmentation, indicating
that increasing the noise profile does not directly result in more
robust models. This is again for all but the gender group where the
correlation value is small. We see that the presence of adversarial
training for accent and age groups was more telling of defense
parity than the budget amount. We notice a non-linear relationship
with the averaged performance metrics for both. This insight is
another reminder of the importance of hyperparameter tuning for
more robust models.
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5.1.2 Common Voice Clips. In our 40 trained models, only 6 per-
formed at random guessing and were thus removed from the anal-
ysis. We found that all models trained with our maximum budget
amount had the performance subdued for this dataset. Since our
perturbation strategy happens pre-normalization to simulate real-
world cases better, this may lead us to believe the overall sound
profiles differ amoung datasets. Thus allowing larger budgets to
have successful training.

Figure 4: Pearson correlation coefficient between the pres-
ence of adversarial training (AT), AT bag-of-tricks (Tricks),
and noise augmentation to defense parity per group for Com-
mon Voice Clips. A negative value indicates a stronger corre-
lation with defense parity, and a positive value indicates a
stronger relationship to defense disparity.

We see that adversarial training is correlated with a decrease in
defense parity between all groups with a larger value for age groups
(Figure 4). This contrasts with the success we saw for the application
in the closed-user set. This may indicate adversarial training may
only benefit all subgroups when their individual distributions do
not shift between training and deployment.

Keeping to the ability of the models to model the distribution
explicitly, we again see that the removal of batch normalization
(tricks) has an across-the-board correlation with defense disparity.
This holding constant across these two unique datasets showcases
the importance of batch normalization for fair robustness. We do
not observe the trend that the model’s aggregated average clean
performance increases when batch normalization is removed with
an accuracy of 0.654±0.284 for batch normalization and 0.633±0.287
for models without.

The presence of noise augmentation in training has a weaker
correlation than those found with AudioMNSIT. However, for gen-
der, we see that there is a weak correlation with disparity when
having noise augmentation. When expanding this analysis beyond
the binary and looking at the levels of noise augmentation (Fig-
ure 5), we see this weaker correlation seen in gender holds. At
the same time, accent and age groups show no correlation to the
level. This, again, maybe a factor of the beneficial level being a
non-linear relationship to defense parity. When examining the role
that increasing the adversarial budget has on defense parity, we
see that for all groups, there exists a weak correlation for defense
disparity as we increase the amount of adversarial noise. This result,
contrasted with AudioMNIST, shows that adversarial training tends

to increase the disparity in users in the case of a larger non-overlap
guarantee in users.

Figure 5: Pearson correlation coefficient between adversarial
training budget size and noise levels augmentation and their
resulting defense parity per group for Common Voice Clips.
A negative value indicates a stronger correlationwith defense
parity, and a positive value indicates a stronger relationship
to defense disparity.

5.1.3 Joint Insights. Our analysis of two different user scenarios
has gleaned some insights into how we can design and study better
systems. Given a practitioner, who is developing a dataset for a
small subset of known users, such as the case of training models per
user, we can see that adversarial training benefits defense parity.
Noise augmentation across experiments did not have strong cor-
relations with increasing or decreasing disparity. However, noise
augmentation generally increases the performance of models un-
der attack. Thus noise augmentation offers a robustness path that
produces fair robustness.

5.2 Rejection: Randomized Smoothing vs.
Neural Rejection

We report the results for neural rejection (NR) and randomized
smoothing (RS) using our parity measurement of the false positive
rejection rate across groups over the defense level (𝐴𝑈𝐶𝐹𝑃𝑅 ). We
find that false rejection rate disparity follows a common order
across tasks of accent, age, and gender in decreasing order. Across
both datasets, we can increase parity by increasing sampling in RS
with no post-hoc equivalent with NR, suggesting that RS may offer
more equatable rejection-based rejection.

5.2.1 AudioMNIST. We first compare the general difference be-
tween the methods in general 𝐴𝑈𝐶𝐹𝑃𝑅 . NR has a value of 0.005,
and RS has a value ranging from 0.074 to 0.001, dependent on the
number of samples. As hypothesized, the RS sampling gives a tun-
able parameter for 𝐴𝑈𝐶𝑎𝑐𝑐 that NR does not provide, allowing for
much lower 𝐴𝑈𝐶𝐹𝑃𝑅 . We contrast the parity and their correlating
factors for gender, age, and accent. Notably for AudioMNIST, each
user has already been seen during training. We would then hypoth-
esize that fewer users would be falsely rejected in the case of NR
due to the distribution modeling property. Ever so, this is not the
case even with the underlying training distribution measurement;
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we see the high disparity between the accent groups (Figure 6).
This result, along with those in the next section, indicates a more
complex relationship than user representation in the case of accent
and age with distributional measurement methods in speech for
rejection.

Figure 6: Parity of the area under the curve for the false
positive rate 𝐴𝑈𝐶𝐹𝑃𝑅 for each method on AudioMNIST. Ran-
domized smoothing (RS) plotted as solid lines over samples
and neural rejection (NR).

5.2.2 Common Voice Clips. Our results with the NR method result
in a learned model with a 𝐴𝑈𝐶𝐹𝑃𝑅 of 0.337. The RS model depends
on the number of samples with values ranging from 0.116 to 0.001.
This again holds that we can achieve equal or better false positive
rate parity by increasing the sampling number. We then compare
the false rejection parity across subgroups (Figure 7).

Figure 7: Parity of the area under the curve for the false
positive rate 𝐴𝑈𝐶𝐹𝑃𝑅 for each method on Common Voice
Clips. Randomized smoothing (RS) plotted as solid lines over
samples and neural rejection (NR).

For the NR method, we have 𝐴𝑈𝐶𝐹𝑃𝑅 parity values of 0.014 for
gender, 0.101 for age, and a larger value of 0.273 for accent. For
the RS, we see values that change oversampling values ranging
from 0.069 to 0.002 for gender, 0.119 to 0.004 for age, and 0.178
to 0.003 for accent. Here we again see the benefit of choosing RS
when considering the fairness implications of security methods.
The benefit is that we can increase the𝐴𝑈𝐶𝐹𝑃𝑅 parity by increasing
the number of samples. When sampling 103 samples, we achieved
higher parity than NR for all subgroup types. While this adds to the
number of model runs, this can be run in parallel and aggregated
later. Future work will be needed to analyze the computational

cost and latency that this may introduce at the cost of fairness in
security.

While sampling seems to increase the parity, we seek to under-
stand better the underlying distributions for the subgroups in the
NR method and factors that may contribute to the higher parity.
Remember that NR relies on the fact that the SVM trained on top
of the neural network will be a CAP model. Prior results from the
closed-user dataset AudioMNIST indicated this to have less of a
factor for user demographic groups with NR. Due to this, we inves-
tigate if having a higher subgroup representation in the training set
results in higher𝐴𝑈𝐶𝐹𝑃𝑅 . Here we seek to measure the correlation
between the size of subgroup training data |𝑋𝑡𝑟𝑎𝑖𝑛,𝑠 | where 𝑠 is the
subgroup.

We find a correlation coefficient with𝐴𝑈𝐶𝐹𝑃𝑅 for each subgroup
with the NR method. We find gender has a correlation coefficient
of 0.691, age has -0.318, and accent has -0.044 for the NR method.
Examining the gender groups, there is high parity in 𝐴𝑈𝐶𝐹𝑃𝑅

where a strong correlation results from only having 3 data points.
Again, the accent parity proves to be the less obvious or linear
relationship with the data representation.

While the intuition data representation in RS is not as straightfor-
ward as with NR, we find that RS has more consistent correlations
to subgroup training data size. For RS, the correlation with training
data size and 𝐴𝑈𝐶𝐹𝑃𝑅 , we see a correlation of −0.499 ± 0.08 (aver-
aged over all sampling). For each subgroup, we see −0.811±0.16 for
gender, −0.430 ± 0.144 for age, and −0.652 ± 0.216 for accent. Here
we see much stronger trends for having smaller 𝐴𝑈𝐶𝐹𝑃𝑅 values
with increasing training data representation for subgroups.

5.2.3 Joint Insights. False positive rejection poses a major emerg-
ing issue for who gets to interact with machine learning models.
We showcase here across both datasets that subgroups in social
groups face different levels of false rejection. Accent groups, in all
cases, were the most difficult to remediate. However, randomized
smoothing’s sampling hyperparameter in all cases allowed us to
decrease the disparity outside of also decreasing false positives for
all users. A practitioner should thus incorporate rejection methods
that incorporate methods with sampling as they decrease unfair,
false-positive rejections.

5.3 Discussion
Our framework and case study allows us to return to the original
question: for whom do machine learning security methods work?
We found a complex relationship between when and how adver-
sarial training can be beneficial along with noise augmentation
level for defense parity. When we had a closed-user pool, we saw
a benefit with adversarial training boosting all groups and having
high defense parity. When we scaled this analysis to a larger, more
complex, open-user pool, our findings pointed toward noise aug-
mentation rather than adversarial training for performance and
defense parity. Future work will need to explore the role of how
large-scale pretraining can provide fair robustness decreasing the
defense disparity. Rather than targeting robustness, future work
may also target fair adversarial training attempting to break the
commonly accepted utility, fairness, and robustness trade-off work-
ing theory.
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We showcase that introducing a rejection method without evalu-
ating in this context would result in a system that refuses to recog-
nize speech from specific demographics more than others despite
equal training data coverage. We find that rejection is based on
distributional measurement methods that reject users with various
accents differently and ages more than gender differences. We show
through the parity measurements outlined we can alleviate this by
using a smoothing method like randomized smoothing’s rejection
mechanism by increasing the number of samples. Future work here
will incorporate the measurement of fairness with the model’s abil-
ity to reject adversarial examples. We hope such post-hoc defenses
commonly deployed will incorporate fairness evaluation even with
an empirically fair base model.

6 CONCLUSION AND LIMITATIONS
This work considers security defenses’ fairness implications in ma-
chine learning systems. We outline the two parity metrics to help
capture these implications. 𝐴𝑈𝐶𝑎𝑐𝑐 (accuracy over attack budgets)
measures the parity between subgroups when introducing a robust-
ness training defense and preprocessing-based defense. 𝐴𝑈𝐶𝐹𝑃𝑅

(false rejection over levels of security) measures biases in rejection
methods that do not attempt to classify adversarial attacks. We
showcase how these measurements and evaluations can result in
actionable studies of defenses.

We acknowledge that such a study relies on the availability of
labels for subgroups that can be difficult to obtain in all domains.
This limitation needs multiple efforts in collecting such labels in a
scalable way and furthering proxy labeling methods. We hope this
proposed method of robustness evaluation will enable such studies
to be performed in other domains. Future work must integrate
user-centric analysis of equality to guarantee safe, secure, and
effective systems for all. This can be done by further investigating
the relationship between user representations and demographic
representations to performance and robustness.
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A APPENDIX
A.1 Model Training
Every model is trained for 1000 epochs with an Adam optimizer
with an initial learning rate 1e-3. We select the model with the
lowest loss on the validation set depending on the training regime.

B MODEL CONFIGURATIONS EVALUATED
We list all models trained for the AudioMNIST (Table 1) and Com-
monVoice Clips (Table 2) and their performance for both aggregated
across all groups clean accuracy and 𝐴𝑈𝐶𝑎𝑐𝑐 . We as well plot his-
tograms of the general model performance across attack budgets for
visualization of performance space for both AudioMNIST (Figure
8) and Common Voice Clips (9).

Figure 8: Distribution of model performance as a histogram
for each budget of attack for AudioMNIST.

Figure 9: Distribution of model performance as a histogram
for each budget of attack for Common Voice Clips.
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Table 2: All models trained for the Common Voice Clips
dataset. Ordered by average aggregated clean accuracy.

Model AT Budget Noise Aug. Clean Acc. 𝐴𝑈𝐶𝑎𝑐𝑐

M5 0.1 0.01 0.069895 0.000327
M5-T 0.1 0.01 0.077094 0.023128
M5-T 0.1 0.05 0.078665 0.023599
M5-T 0.1 0.1 0.080366 0.02411
M5 0.1 0.1 0.08233 0.011455
M5-T 0.1 0 0.087696 0.026309
M5 0.1 0.05 0.124476 0.000315
M5 0.1 0 0.128796 0.000181
M5 0.01 0.1 0.710209 0.029066
M5 0.01 0.05 0.710602 0.028159
M5 0.01 0 0.722382 0.028335
M5-T 0.01 0.1 0.730759 0.026885
M5-T 0.005 0.05 0.743979 0.020492
M5-T 0.01 0.05 0.744895 0.026519
M5-T 0.005 0.1 0.74555 0.021992
M5 0.005 0.1 0.747251 0.02601
M5 0.005 0.05 0.754188 0.026255
M5-T 0.001 0.05 0.756675 0.008198
M5 0.01 0.01 0.760864 0.02984
M5-T 0 0.1 0.765052 0.00164
M5-T 0.005 0 0.765838 0.016547
M5-T 0.01 0.01 0.77055 0.026193
M5-T 0.01 0 0.77199 0.026416
M5-T 0.001 0.1 0.772906 0.005284
M5-T 0 0.05 0.775 0.001862
M5-T 0 0 0.777618 0.001064
M5-T 0.005 0.01 0.785209 0.017105
M5 0.001 0.1 0.788613 0.011012
M5 0.005 0 0.796204 0.025012
M5-T 0.001 0 0.79699 0.003247
M5 0.005 0.01 0.801963 0.025564
M5-T 0.001 0.01 0.807461 0.003538
M5 0.001 0.05 0.814005 0.011264
M5 0.001 0.01 0.821597 0.008436
M5 0.001 0 0.832461 0.003997
M5-T 0 0.01 0.833508 0.005652
M5 0 0.05 0.835209 0.001013
M5 0 0.1 0.845812 0.001624
M5 0 0.01 0.866361 0.000427
M5 0 0 0.871597 0.000332

Table 1: All models trained for the AudioMNIST dataset. Or-
dered by average aggregated clean accuracy.

Model AT Budget Noise Aug. Clean Acc. 𝐴𝑈𝐶𝑎𝑐𝑐

M5 0.1 0.1 0.080333 0.000227
M5-T 0.01 0.1 0.1 0.03
M5-T 0.1 0 0.1 0.03
M5-T 0.1 0.01 0.1 0.03
M5 0.1 0 0.1 0.000302
M5-T 0.005 0.01 0.1 0.03
M5-T 0.005 0.05 0.1 0.03
M5-T 0.005 0 0.1 0.03
M5 0.1 0.05 0.1 0.006621
M5-T 0.01 0.05 0.1 0.03
M5-T 0.01 0.01 0.1 0.03
M5-T 0.01 0 0.1 0.03
M5-T 0.1 0.1 0.1 0.03
M5-T 0.1 0.05 0.1 0.03
M5-T 0.005 0.1 0.1 0.03
M5 0.1 0.01 0.101 0.000081
M5 0.01 0.1 0.102167 0.010445
M5 0.005 0.1 0.117667 0.001093
M5 0.01 0.05 0.129 0.011811
M5 0.01 0.01 0.198833 0.001382
M5 0.005 0.05 0.2845 0.000866
M5 0.005 0.01 0.451167 0.001022
M5 0.01 0 0.563667 0.000203
M5 0.005 0 0.780167 0.000542
M5 0.001 0.1 0.850667 0.001652
M5 0.001 0.05 0.8745 0.001679
M5-T 0.001 0.1 0.875833 0.001975
M5-T 0.001 0.05 0.880667 0.002269
M5 0.001 0.01 0.8895 0.001887
M5-T 0.001 0.01 0.916667 0.004304
M5-T 0.001 0 0.936167 0.006288
M5 0.001 0 0.946667 0.001786
M5 0 0.05 0.967 0.000517
M5-T 0 0.05 0.969167 0.003129
M5-T 0 0.01 0.9715 0.008602
M5-T 0 0 0.973833 0.023675
M5-T 0 0.1 0.975667 0.001859
M5 0 0.1 0.983167 0.000477
M5 0 0.01 0.9855 0.000509
M5 0 0 0.997667 0.000901
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