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ABSTRACT

Title of Thesis: Using Web Images & Natural Language
for Object Localization in a Robotics
Environment

Justin D. Rokisky, Master of Science, 2020

Thesis directed by: Dr. Cynthia Matuszek
Department of Computer Science

The ability for humans to interact with robots via language would allow for

more natural interactions between robots and humans. To this end, in this work I

introduce a novel approach that allows robots to localize objects from an unbounded

set of classes given only a description of a target object. The first part of this work

is a performance analysis of current state of the art object detectors and a region

proposal approach [1] on the Autonomous Robot Indoor Dataset [2]. The second

part of this work introduces a three stage natural language guided webly object

localization approach and associated experiments to evaluate its performance. The

first stage of the approach generates a webly dataset without any manual curation

from a human description of the target object. The second stage of the approach

uses the webly dataset to train a binary classifier for the target object. Finally,

region proposals from selective search [1] are input to the webly supervised binary

classifier and the region proposal with the highest confidence score is returned as

the prediction.
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Chapter 1: Introduction

The promise of robots operating alongside humans continues to move closer

towards reality. One promising area of human robot interaction (HRI) is the de-

velopment of systems that allow humans to communicate with robots via natural

language as this will allow for easier and more natural interactions [3]. In this work I

introduce a novel approach that allows robots to localize objects from an unbounded

set of classes given only a description of a target object. The approach requires no

ground truth data or knowledge of target classes as it uses an oracle, in this case

internet search engines, to ground a given object description to example images of

the target object which are then used to train a deep-learning based classifier.

One challenge associated with robotic vision object detection and localization

is the necessity of being able to handle the dynamic nature of human environments.

As many state of the art deep learning object detection and localization approaches

are trained on datasets with a fixed number of classes [4–6] they are unable to identify

objects outside of these classes. It is possible to increase the number of available

classes by manually annotating data for the new classes and retraining classifiers,

but this is an intensive task. To remedy this, work has been done [2, 7–11] towards

utilizing the web as a source of weakly supervised training data. Approaches that
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use web data in such a way are generally referred to as webly supervised approaches

[7,12,13]. There are difficulties associated with using web data for training classifiers

such as handling noise in web images [14–16] and dealing with differences between

the web domain and target domain [10, 13]. The approach in this paper tries to

overcome these difficulties and the additional difficulties associated with not having

a bounded and known set of object classes by utilizing a region proposal ranking

system. Since the target object is guaranteed to be present in the scene, even if the

learned webly representation is weak due to noise or domain differences, the region

containing the target object should be ranked the highest due to it being the most

similar to the representation learned from the web data.

The main contribution of this thesis is the introduction of a three stage natural

language guided webly supervised object localization approach for use in a robotic

environment with novel objects. A description of each stage of the approach follows.

The first stage of the approach involves collecting a short natural description of an

object in the robot’s environment. This short description is then used to query

image search engines to generate a webly dataset of images that match the given

description. The second stage of the approach uses the gathered web data and MS

COCO [6] crops to train a binary classifier for the target object. Finally, selective

search [1] is used to generate region proposals which are input to the binary classifier

and then ranked according to their confidence scores. The highest ranking region

proposal is returned as the location of the target object.
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Chapter 2: Related Work and Background

2.1 Related Work

In this section I describe work that relates to this thesis. I specifically focus

on robotic vision object detection, supervised object detection, webly supervised

vision, and grounded language.

2.1.1 Robotic Vision Object Detection

In this section I provide an overview of some robotic vision RGB-D datasets

that can be used for testing robotic vision object detection and localization ap-

proaches as well as some approaches that have been performed on these datasets.

Some of the unique challenges faced in robotic vision that necessitate the construc-

tion of specific datasets are the occlusion of objects, varied lighting conditions, the

presence of novel objects, and the relative placement of the sensor(s) being used for

data collection.

Due to the varied tasks of robotic platforms (e.g. navigating spaces, grasping

objects), the presence of sensors from multiple modalities can be a big benefit.

To this end, the availability and effectiveness of commercial RGB-D cameras (e.g.
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Xbox Kinect, Intel Realsense) have led to them being a mainstay in robotics vision

research [2, 17–20]. The RGB-D Object Dataset (ROD) [17] was one of the earlier

robotic vision RGB-D datasets released. It contains both multi-view RGB-D images

of 300 houshold objects from 51 categories as well as RGB-D video sequences taken

in human environments (e.g. a kitchen) of some of those object instances. The

RGB-D video sequences were later extended in [18]. Other RGB-D robotic vision

datasets have focused on objects in more natural human environments under varied

operating conditions [2, 19,20].

Multiple object detection and object classification approaches have been at-

tempted on the previously mentioned datasets [17]. In older works, classical com-

puter vision approaches such as using sliding windows coupled with handcrafted

features and SVMs [17] have been used for object detection. More modern ap-

proaches that do not use handcrafted features have also been introduced for robotic

vision [18]. There has also been work done on the other parts of the object detection

pipeline, such as a 3D multi-view region proposal method [19] and enhancing robotic

vision datasets with synthetic data [21] and web images [2].

This work builds on previous work in robotic vision object detection in two

ways: I show the performance of state of the art and commercial object detectors

on a robotic vision dataset and following in the footsteps of Georgakis et al. [19],

show the performance of selective search on a different robotic vision dataset.
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2.1.2 Supervised Object Detection

As many of the current state of art object detection approaches are supervised

learning based, they require large datasets consisting of cleaned and labeled data

to perform well. These datasets are important as they are used as benchmarks to

compare the performance of different approaches. Some of the key object detection

benchmark datasets are ILSVRC [5], MS COCO [6] and Pascal VOC [4]. Generally

object detection approaches can be split into two different categories [22]: single

stage approaches [23–29] and two stage approaches [30–34]. With the introduction

of DETR [35], there is now a third category: transformer based approaches.

Single stage approaches generate object predictions with no intermediate step.

Compared to two stage approaches, they tend to have faster inference times but

worse accuracy [36]. The YOLO family [25–27] are popular examples of single stage

approaches. Yolo [25] introduced an extremely fast CNN based object detector

that works by splitting the input image into grids and having each grid predict

the conditional class probability of an object and bounding boxes with associated

confidence scores. One of the limitations of YOLO is that it struggles with predict-

ing multiple objects in close relation to one another due to the limited number of

bounding boxes predicted per grid cell. Building on [25], Redmon et al. introduced

YOLOv2 [26]. They noted that two areas YOLO struggled with were lower recall

than two stage approaches and a greater number of localization errors and in re-

sponse make multiple changes such as: introducing batch normalization, multi-scale

training, a pass-through feature layer, etc. In [27], Redmon and Farhadi introduced
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YOLOv3 which improved upon YOLOv2 [26]. As noted in the title of the paper,

”YOLOv3: an Incremental Improvement”, incremental changes such as: increasing

the depth of the feature extraction network, adding bounding box predictions across

3 scales, and using multilabel classification for the grid cell bounding box prediction

are made to increase performance while maintaining fast inference speed.

Another single stage approach, SSD, was introduced by Liu et al. in [23]. The

SSD network utilizes the early layers of standard image classification networks (e.g.

[37]), chops off the classification layers, and adds additional convolutional layers to

allow for multi-scale feature maps for object detection. They report inference times

faster than YOLO while also being more accurate than Faster R-CNN. Noticing that

the class imbalance between foreground and background examples during training

was one of the key reasons why single stage approaches struggled to compete with

two stage approaches, in [24] Lin et al. develop a focal loss for down-weighting the

loss assigned to well-classified examples (e.g. easy background cases). This focal

loss is used in RetinaNet, a single stage object detector that uses a feature pyramid

network [38] on top of a standard convolutional network as its backbone and then

has two subnetworks per feature pyramid layer: one for classification and one for

bounding box regression.

Two stage approaches split the object detection process into two steps: gen-

erating region proposals and evaluating those proposals. One of the first two stage

object detectors to use deep learning based approaches was R-CNN [30] by Girschick

et al. The R-CNN architecture consists of three modules: a region proposal network

, a CNN for feature extraction (they use AlexNet [39]), and linear SVMs (one per
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class) to classify the extracted features. As each module in R-CNN needs to be

trained and run separately this has a large negative impact on performance and

in [32] Girschick introduces Fast R-CNN, which unifies the latter two portions of R-

CNN to improve performance. First the per-proposal feature extraction is replaced

by a process that extracts features from the entire image once and then region of

interest pooling is used to generate feature maps per region proposal. Second, each

region’s feature map is input into a subnetwork that predicts both the softmax class

probabilities and class specific bounding box regression. This network is trained

using a multi-task loss. Girschick reports up to an 18x training speedup and up

to 213x test speedup over R-CNN. After Fast R-CNN replaced the latter two mod-

ules of R-CNN, in [33] Ren et al. introduced Faster R-CNN which utilized a deep

learning based region proposal network (RPN) to replace the region proposal mod-

ule. The RPN uses the same whole image feature extraction as the rest of Fast

R-CNN so additional computation is limited. The RPN is trained with the Fast

R-CNN module in an approximate joint fashion ensuring that neither diverges from

the other. The authors report much faster inference time than Fast R-CNN with

higher accuracy.

The transformer based approach introduced by Carion et al. in [35] is the first

transformer based object detection approach. The architecture of DETR consists

of a CNN backbone for feature extraction, a transformer encoder that processes

the extracted feature along with a positional encoding, a transformer decoder that

processes the encoder’s results along with object queries, and finally a feed forward

network that uses the output of the decoder to predict a bounding box or no object.
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The authors report performance similar to an optimized version of Faster R-CNN.

The approach introduced in this thesis is inspired by the two stage approaches.

Like R-CNN and Fast R-CNN, it uses selective search [1] as the region proposal

method but any region proposal method could be used. The two key differences

between the approach in this paper and other object detection approaches are that

it is not trained on a finite set of object classes, as it uses human descriptions coupled

with the web to generate training data, and that it leverages the knowledge that the

described object exists in the given image. This means that the approach only needs

to find the regions in the image that are the closest to the learned representation of

the target object and not some absolute representation of the object.

2.1.3 Webly Supervised Vision

There are a very large amount of images coupled with descriptive information

on the internet that have been indexed by search engines (e.g. Google, Bing) and

made available via commercial sites (e.g. Flickr). As many of these search engines

and sites are searchable, it has become relatively easy to gather many different

images of object instances. That being said, there are associated difficulties in

using web images such as noise and differences between the web domain and target

domain. Some datasets [4, 5] use images from web sources, but the image selection

process is heavily curated. The WebVision dataset [40] was introduced as a dataset

for comparing the performance of webly approaches.

One of the biggest difficulties in using webly datasets for training learning

8



approaches is the amount of noise in web images [14–16]. One specific type of noise

is the presence of outlier images. In [41] a one-class SVM is used to remove such

outlier images from webly datasets. Critical of using outlier detection approaches

for removing noise in webly datasets, Smyth et al. [42] introduce an approach that

focuses on removing elements that will have negative training value from the we-

bly dataset. Leveraging the presence of image metadata, Yang et al. [43] analyze

image metadata to remove noisy outliers. Instead of removing noisy webly dataset

elements, curriculum based approaches [7, 44, 45] rank elements by the amount of

noise/complexity they contain and then train on easier elements first followed by

the more difficult elements.

Another difficulty associated with using webly datasets for training learning

approaches is bridging the gap between the web domain and the target domain.

In [13], Tao et al. introduce a webly supervised object detector the uses a domain

adversarial loss to adapt the web domain to the target domain. In [10], Bergamo et

al. introduce a domain adaptation approach that when given some number of high

quality supervised data examples can use web examples to train an image classifier.

Beyond the straightforward approach of using multiple search engines [11] and

querying for the target object name, other complex strategies have been introduced

for generating webly datasets. One approach is to use query expansion [11,46,47] to

increase the quality of images that are returned from search engines. Another type of

approach involves using the reverse image lookup feature of search engines [12,41,48]

to find either descriptive information (e.g. object name) about the target image or

related images. Related images are directly used as the webly dataset and in the

9



case of descriptive information, it is processed and used as the input to generate a

webly dataset.

Due to the dynamic nature of robotic environments, effective webly supervised

vision approaches would be a huge benefit to the robotics community. There have

been multiple attempts to use web image data for image classification in a robotics

context [2,11,12,41,49] but generally classifiers trained on webly data do not perform

as well as those trained on non-webly data. The approach introduced in this work

differentiates itself from other webly supervised robotic vision approaches utilizing

human descriptions of objects to generate a webly dataset. The human description

allows for a more descriptive query string to be used in the process of searching for

web images.

2.1.4 Grounded Language

Grounding language is the process of mapping natural language to representa-

tions [3,50,51] of objects [52–55], concepts [56–59], or actions [60–65], in the physical

world. This is an important field for human robot interaction (HRI) as successful

grounded language acquisition approaches can enable more natural interaction be-

tween humans and robots.

Work has been done to use language for robotic object detection [53–55].

Nguyen et al. introduce an approach for object retrieval based on a natural lan-

guage request for an object that can be used to perform certain actions (e.g. to

cut something) [54]. Krishnamurthy et al. introduce an approach for mapping nat-
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ural language to target objects in a physical environment by learning how to map

language to physical categories and relational phrases [55]. Hill et al. use episodic

memory coupled with one-shot learning to allow an agent to learn to identify an

object with only a single visual perception and description of the object [53].

The approach introduced in this work differentiates itself from other grounded

language approaches by using search engines coupled with deep learning based ap-

proach to map a natural language description of an object to the object in the

physical world.

2.2 ARID: Autonomous Robot Indoor Dataset

In this section I provide an in depth overview of ARID, the dataset that

the introduced approach is evaluated on. In Loghami, Caputo, and Vincze’s work

Recognizing Objects In-the-wild: Where Do We Stand? [2], they noted the lack

of a dataset for benchmarking robotic vision based object detection approaches in

real-life environments. In response to this they introduce a new dataset for this

purpose: the Autonoumous Robot Indoor Dataset. This dataset differs from most

other robotic vision datasets in that it contains scenes with varied lighting, occluded

objects, and from the perspective of a mobile robot in a natural human environment.

The dataset consists of rgb images synced with their depth image counterparts and

the coordinates of bounding boxes for the included object categories. The authors

also introduced an auxiliary dataset called the ARID Web Object Dataset that

consists of filtered web images for the object categories present in the main dataset.
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2.2.1 Dataset Statistics

Although the paper mentions that the complete dataset contains 6,000+ im-

ages with 120,000+ bounding boxes, the publicly released dataset consists of 3,251

annotated images with 40,262 bounding boxes. The images are frames from 197

different video segments roughly equally split between each point in the environ-

ment. This restricted dataset was created by the authors to perform an image

classification experiment comparing the performance of 5 different CNN architec-

tures trained on the ARID object crops, the University of Washington’s RGB-D

Object Dataset [17], and the ARID Web Object Dataset. To help work with this

dataset programatically, a python package has been developed and is available at:

https://github.com/Jrokisky/Arid-Dataset-Helper.

2.2.2 Collection System and Process

The dataset was collected in what appears to be a university lab environment

under various lighting conditions from the perspective of a mobile robot with a

commercial RGB-D camera, the Asus Xtion Pro. During each session, the robot

would loop through four separate waypoints of which instances can be seen in 2.1.

Upon reaching each waypoint, the robot would horizontally pan its RGB-

D camera to record the environment with a resolution of 640x480 pixels. After

the robot performed two loops through the waypoints, the object instances were

randomly moved. After the data collection process was completed, every fifth image

was chosen to be part of the dataset and the RGB images were synced with their

12
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Figure 2.1: Instances of RGB images from ARID [2] each of the four waypoints.
The top left, top right and bottom left images are of the same table with different
object instances and placements from different points of view. The location of the
bottom right image can be seen in the background of the top right image by using
the microwave as a reference. These images were used with the explicit permission
of their creator.

13



Figure 2.2: 20 randomly selected object instances from the 51 available object cat-
egories in ARID [2]. These images were used with the explicit permission of their
creator.

compliment depth images.

2.2.3 Object Categories

The dataset contains 153 object instances that are grouped into 51 different

categories. These object categories are the same object categories in the University

of Washington’s RGB-D Object Dataset [17]. Bounding boxes are given for each

object instance present in each image. Examples of some object instance crops can

be seen in 2.2.
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Chapter 3: A Three Stage Natural Language Guided Webly Super-

vised Object Localization Approach

The approach introduced in this thesis is a 3 stage natural language guided

webly supervised object localization approach 3.1. The first stage uses a natural lan-

guage description of a target object input into multiple search engines to generate

a webly dataset of images of the target object. The second stage learns a represen-

tation from the webly dataset via a binary classifier. Although there may be noise

in the webly dataset and domain differences between the web domain and target

domain, salient and identifiable features should be shared between the majority of

the images in the webly dataset and target object. The goal of the binary classifier

is to learn to recognize these highly salient features. The third stage uses the learned

binary classifier to rank region proposals generated by selective search [1] by their

confidence scores. The highest scoring region will contain the strongest representa-

tion of the learned salient features which will hopefully map to the location of the

target object. Therefore the highest scoring region is returned as the approach’s

prediction of the target objects location in the scene.
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Figure 3.1: High level overview of the introduced approach.
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3.1 First Stage: Automatically Generating a Webly Dataset

The first step in the introduced approach is to acquire a description of some

object in the given scene. This description should ideally be short, informative,

and contain the name of the object (e.g. yellow lemon fruit). This description is

then input to multiple search engines (https://yandex.com/images/, flickr.com,

and www.bing.com/images), as in [11] and [7], and up to 1000 image results are

saved from each search engine. Next the web images are cleaned and prepared to

be used in training. First, duplicate and outlier images are removed [11]. Images

are considered outliers if their feature embedding (as computed by ResNet-152 [66]

pretrained on ImageNet [5]) has an l2 distance from the mean that is in the top 30%.

Each of these steps is done automatically with no manual curation or oversight.

3.2 Second Stage: Learning a Representation

After the webly dataset has been created it is combined with crops from the

MS COCO [6] validation set to form a dataset for the training of a binary classi-

fier. The images in the webly dataset are used as the positive class. The top 25

largest crops from each MS COCO [6] class are used as the negative class. tdAny

collection of images of objects could be used as the negative class here. Ideally the

negative class contains a diverse set of objects to ensure that the negative class is

robust. The mean and standard deviation of the dataset are computed and used to

normalize the dataset. Three other transforms are applied to the training dataset:
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images are resized to 128 x 128, a random horizontal flip is applied [67], and ran-

dom erasing [67, 68] is applied. The Resnet-152 [66] architecture, pretrained on

ImageNet [5] and with the classification layer replaced with a single element linear

layer, is finetuned for 10 epochs on the dataset. The dataset transforms and deep

learning model were chosen after experimenting with different transforms and mod-

els on the validation dataset (the lemon 0 object instance dataset). Precision-recall

curves for each learned binary classifier applied to the ARID object instance crops

can be seen in 4.3.

3.3 Third Stage: Generating and Processing Region proposals

Finally, the fast variant of selective search [1] is used to generate region pro-

posals. The fast variant of selective search was chosen after experimentation 4.2

as it offered a reasonable trade-off between the number of proposed regions that

would need to be processed and its ability to recall ARID object bounding boxes at

a reasonable IOU threshold. The proposed regions are input into the learned binary

classifier and ranked according to their confidence score. The highest scoring region

is returned as the approach’s predictiion for the location of the target object in the

scene. Non-maximum suppression is applied when more than one proposed region

is desired to ensure that different proposals encompassing the same object are not

returned.
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Chapter 4: Experiments and Analysis

In this chapter I present the experiments that were conducted to assess the

viability of the approach introduced in this paper. I first analyze the performance

of current state of the art and commercial service object detectors on a subset of

ARID to understand how well they perform on a robotics dataset and to establish

which model to use as a baseline to compare the introduced approach to. Then

I analyze the performance of different variants of selective search [1], the region

proposal method used in the introduced approach, on ARID to determine which

variant to use. Next, I analyze performance of the learned binary classifiers used in

the second stage of the introduced approach on ARID object crops. Then I analyze

the performance of the entire introduced approach over multiple object instances in

ARID. Finally, I compare the performance of the introduced approach to one of the

best performing models, Faster R-CNN [33], on the subset of object instances that

are present in both ARID and MS COCO. Aggregate results can be seen in 4.1.

4.1 Object Detector Performance

In this section, I analyze the performance of two different groups of object

detection approaches on ARID: current state of the art object detectors and com-
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mercially available proprietary services. The goal of this experiment is to find the

model(s) that performs best, without finetuning/training, so they can be used as

a baseline for evaluating the performance of the introduced approach. Since the

current state of the art object detectors and potentially the commercially available

services are deep learning based, one difficulty faced when comparing object detector

performance is that the object categories they were trained to detect might differ

from those present in ARID as well as from each other. To remedy this, I randomly

choose 60 video segments (15 taken from each of the available waypoints) and ran-

domly select one frame from each segment. After frames have been selected, I input

these frames into each object detection approach and record the predictions with

a confidence score of over 70%. I then manually inspect these predicted bounding

boxes. For each predicted bounding box, I consider 4 possible bounding box pre-

diction types: the bounding box does not include any visible object, the bounding

box includes an entire object with an inaccurate label, the bounding box includes

part of an object with an accurate label, and the bounding box includes an entire

object with an accurate label. I also note when an object detection model does

not correctly produce a bounding box over an object instance from a known object

category. Object categories are considered known if we have access to the object

categories that the approach was trained on or inferred from other seen predictions.

Overlapping bounding boxes were removed.
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4.1.1 State of the Art Object Detectors

In this section, I analyze the ability of three state of the art object detectors

trained on MS COCO: Faster R-CNN [33], YoloV3 [27], and DETR [35] to detect

MS COCO object categories in the selected ARID images. Object detection per-

formance was manually evaluated as there were not object instances present from

a majority of MS COCO object categories. These three models were chosen as

they are representative of three different types of object detection approaches: a

two stage network (Faster R-CNN), a single stage network (YoloV3), and a trans-

former based network (DETR). They all also have publicly available Pytorch [69]

implementations, perform well on the MS COCO benchmark [22], and have publicly

available MS COCO pretrained weights.

4.1.1.1 Shared ARID and MS COCO Object Categories

The MS COCO 2017 dataset consists of 80 object categories, 8 of which are

explicitly shared with ARID. The shared object categories are: apple, scissors, key-

board, orange, bowl, toothbrush, banana, and cell phone. There are two MS COCO

object categories, cup and bottle, that are not direct matches to ARID object cate-

gories, coffee mug and water bottle, but encompass those object categories so they

were considered to be shared as well. As ARID was collected in a natural human

environment, there are also several other MS COCO object categories present such

as person, toothbrush, tv/monitor, microwave, and laptop.
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4.1.1.2 Faster R-CNN

Faster R-CNN [33] is an object detection network that builds upon Fast R-

CNN [32] by introducing a deep learning based region proposal network (RPN). The

RPN generates regions that are then input to a Fast R-CNN network. The RPN

shares convolution features with the Fast R-CNN network allowing region proposals

to be generated at minimal cost which yields significantly faster inference perfor-

mance compared Fast R-CNN. The RPN and Fast R-CNN networks are trained

simultaneously.

The Faster R-CNN [33] implementation offered by the Pytorch Torchvision

package available at https://pytorch.org/docs/stable/torchvision/models.

html#faster-r-cnn was used to produce bounding box predictions. This imple-

mentation has a ResNet-50-FPN backbone and has been pretrained on the MS

COCO 2017 training dataset. The publicly available MS COCO pretrained weights

can be found at https://download.pytorch.org/models/fasterrcnn_resnet50_

fpn_coco-258fb6c6.pth.

A total of 533 bounding boxes with a confidence score of over 70% were pre-

dicted across 35 different MS COCO object categories. The aggregate performance

can be seen in 4.1. Prediction performance for each object category can be seen in

4.1. Some of the object categories that Faster R-CNN predicted best were: bowl,

microwave, and person.
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Figure 4.1: Faster R-CNN object detection performance for MS COCO object cate-
gories on a subset of ARID. As bounding boxes were not present for all MS COCO
object categories, these metrics are the result of manually inspecting predicted
bounding boxes.

4.1.1.3 DETR: Detection Transformer

DETR [35] is the first transformer [70] based object detection network that has

performance comparable to state of the art methods (such as Faster R-CNN). The

network consists of a CNN backbone for feature extraction, a transformer encoder,

a transformer decoder, and a feed forward network. The authors claim that the

transformer based nature of the network allow it to process the image as a whole

using contextual information compared to traditional object detection methods that

can only focus on different regions of an image independently.

The DETR [35] implementation offered by Facebook Research available at

https://github.com/facebookresearch/detr was used to produce bounding box

predictions. The DETR model with a ResNet 50 [66] backbone was used. The

publicly available MS COCO pretrained weights can be found at https://dl.

fbaipublicfiles.com/detr/detr-r50-e632da11.pth.
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Figure 4.2: Two interesting examples of DETR predictions. The left image contains
an accurate prediction of a keyboard that is hard to distinguish and that none of
the other approaches detected. This seems to give credence to the idea that DETR
can successfully use contextual information as the authors claim. The right image
contains multiple missed predictions classifying one box of food as multiple books.
Images are from [2] and used with the permission of their creator.

A total of 660 bounding boxes with a confidence score of over 70% were pre-

dicted across 33 different MS COCO object categories. The aggregate prediction

statistics can be seen in 4.1. Out of all of the object detection approaches, DETR

had the highest rate of completely accurate predictions as well as the lowest rate

of missed object predictions. This was balanced by the fact that it also predicted

the most bounding boxes with no object present. Cherry-picked and a lemon-picked

predictions can be seen in 4.2. A breakdown of predictions by MS COCO object

category can be seen in 4.3. Some of the object categories that DETR performed

best with were: bowl, person, and keyboard.
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Figure 4.3: DETR object detection performance for MS COCO object categories
on a subset of ARID. As bounding boxes were not present for all MS COCO object
categories, these metrics are the result of manually inspecting predicted bounding
boxes.

4.1.1.4 YOLOv3

YoloV3 [27] is a single stage object detector that builds on YoloV2 [26] by

introducing a new deeper feature extractor (Darknet-53) and introduces bounding

box predictions over multiple scales. As it is a single stage object detector, it has

fast inference times [36].

The YoloV3 implementation offered by Ultralytics available at https://github.

com/ultralytics/yolov3 was used to produce bounding box predictions. The

YoloV3 MS COCO pretrained weights are available at https://pjreddie.com/

media/files/yolov3.weights.

A total of 265 bounding boxes with a confidence score of over 70% were pre-

dicted across 26 different MS COCO object categories. The aggregate prediction

statistics can be seen in 4.1. YoloV3 performed the worst out of the 3 state of the

art deep learning object detection approaches as it had the highest miss rate by a
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Figure 4.4: YOLO v3 object detection performance for MS COCO object categories
on a subset of ARID. As bounding boxes were not present for all MS COCO object
categories, these metrics are the result of manually inspecting predicted bounding
boxes.

significant margin. It especially struggled with larger items such as the potted plant

and dining table. A breakdown of predictions for the different MS COCO object

categories can be seen in 4.4.

4.1.2 Commercial Services

4.1.2.1 Google Vision

Google Vision is a commercial service available from Google. It provides a wide

range of services such as OCR, face detection, text detection, and object detection.

In this work I used the object detection service.

The Google Vision Python API was used to interact with the object detec-

tion service. Documentation for the python api can be found at https://cloud.

google.com/vision/docs/object-localizer. The first 1000 object detection re-

quests were free and it costs $2.25 for every 1000 object detection requests after
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Figure 4.5: Google Vision predictions for each of the different object categories. The
predicted bounding boxes were manually evaluated for accuracy.

that.

A total of 139 bounding boxes with a confidence score of over 70% were pre-

dicted across 14 different object categories. The aggregate prediction statistics can

be seen in 4.1. A breakdown of the predictions of each of the object categories can

be seen in 4.5. The Google Vision service performed best at detecting people. The

packaged food category did not have any missed items as the category was overly

broad and it was hard to accurately identify what constituted a packaged food.

4.1.2.2 Microsoft Azure

The Microsoft Azure Cognitive Service is a set of commercially available artifi-

cial intelligence services. It offers services such as face detection, content moderation,

speaker detection, and object detection. The object detection service was used here.

The Microsoft Azure Cognitive Service computer vision python api was used to

interact with the service. Documentation for the api can be found at https://docs.
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Figure 4.6: Microsoft Azure predictions for each of the different object categories.
The predicted bounding boxes were manually evaluated.

microsoft.com/en-us/azure/cognitive-services/computer-vision/quickstarts-sdk/

client-library?pivots=programming-language-python. The service cost $1.50

per 1000 image requests.

A total of 24 bounding boxes with a confidence score of over 70% were predicted

across 6 different object categories. The aggregate prediction statistics can be seen

in 4.1. A breakdown of the predictions of each of the object categories can be seen

in 4.6.

4.1.3 Analysis

In this section I have shown the performance of three types of state of the art

deep learning based object detection approaches, without training/finetuning on the

target dataset, and two commercially available object detection approaches on sixty

scenes from ARID, a robotic vision dataset. The deep learning based approaches

performed significantly better than the commercial services. DETR, a transformer
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Name Faster R-CNN DETR YOLO v3 Google Vision MS Azure

# of Predictions 533 660 265 139 24
Complete Object
Accurate Label

45.2% 49.3% 30.2% 33.2% 15.2%

Partial Object
Accurate Label

2.1% 3.8% 0.2% 0.0% 0.0%

Complete Object
Inaccurate Label

17.7% 16.8% 9.4% 1.8% 3.0%

No Object 2.0% 8.2% 0.2% 0.0% 0.0%

Missed 33.0% 21.9% 60.0% 65.1%* 81.8%

Table 4.1: Aggregate results for each object detection approach. This data is the
result of manually evaluating the bounding box predictions of each object detector
on the chosen subset of ARID.

based approach, and Faster R-CNN, a two stage approach, performed comparable

to each other and both performed better than YoloV3, a single stage approach. It

is interesting to note that all three state of the art deep learning approaches had

a significant percentage of predictions that completely bounded an object, but had

an inaccurate label, implying that all three of these types of approaches have some

lower level notion of “objectness”. Looking at the commercially available services,

the Google Vision service performed better than the Microsoft Azure service. The

Google Vision service both covered more object categories and did so with a higher

complete object accuracy than the Microsoft Azure service. Both of the commer-

cially available services tended to be more conservative than the state of the art

deep-learning approaches as evidenced by them having a very small percentage of

predictions with inaccurate labels, no partial predictions, and no predictions with

no object.
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4.2 Selective Search Performance

In this section I present the results of running selective search [1], a classical

computer vision region proposal approach, on ARID. Selective search is a superpixel

based object region proposal approach that identifies possible object locations by

combining smaller similar regions together. Selective search was chosen as it has

been shown to perform reasonably well over another robotic vision dataset [19] as

well as being the region proposal method used in R-CNN [30]. Three separate

variants of selective search: single, fast, and quality were used on the entirety of

ARID. The implementation used to generate the region proposals can be found at

https://github.com/ChenjieXu/selective_search. The intersection over union

metric (IOU) was used to evaluate the performance of each selective search variant.

The IOU metric is a standard metric for measuring the region proposal portion of

object detection approaches [4–6, 71]. Three separate IOU values were considered:

0.5, 0.7, and 0.9.

4.2.1 Analysis

As can be seen in 4.2, the quality variant of selective search performed the

best, but at the cost of increased execution time as well as drastically more region

proposals that would need to be processed by a classifier. Across the three variants,

selective search struggled with a similar set of objects (rubber eraser, dry battery,

etc.) that I believe is due to the small object size and/or varied coloring. On

the other hand, all selective search variants were more successful with a similar set
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of objects (bell pepper, keyboard, hand towel, etc.) that I believe is due to their

uniform color and/or larger size. Overall, the results from this experiment show

that selective search can be a useful tool for generating region proposals for object

detection in robotic vision environments.

Variant Avg. # of Proposals Avg. Exec. Time 0.5 IOU 0.7 IOU 0.9 IOU

Single 770 12 seconds 78% 45% 4.5%
Fast 3397 24 seconds 91% 67% 8.8%

Quality 17952 143 seconds 99% 92% 37%

Table 4.2: Aggregate results for each selective search variant. The average proposal
count and average execution time are per image. The IOU columns represent the
total object instance recall at those IOU thresholds.
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Figure 4.7: Percent of ARID object instance bounding boxes that were discovered
by generated regions at three IOU score thresholds for the selective search single
variant.
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Figure 4.8: Percent of ARID object instance bounding boxes that were discovered by
generated regions at three IOU score thresholds for the selective search fast variant.
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Figure 4.9: Percent of object instance bounding boxes that were discovered by gen-
erated regions at three IOU score thresholds for the selective search quality variant.
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4.3 Evaluating the Binary Classifiers on ARID Crops

In this section I evaluate the performance of the introduced approach’s webly

supervised binary classifiers on the ARID object instance crops. The goal of this

experiment is to gain an understanding as to how well the binary classifiers’ learned

representations maps to the associated ARID object instance. For each trained

classifier, the ARID object instance used to generate the description for its webly

dataset is considered the positive class, while all object instances from outside the

target object instance’s category is considered the negative class (e.g. apple 1 and

apple 2 crops would not be included in either the positive or negative class when

evaluating the apple 0 classifier, but lemon 0 crops would be). The precision-recall

curve is used as the evaluation metric as it allows us to see the classifiers’ perfor-

mances over multiple thresholds which is beneficial as the system does not require

an absolute classification threshold, but a relative one as it uses the top scoring

region proposal as its prediction.

4.3.1 Analysis

Considering the precision-recall curves for each of the binary classifiers 4.10

there are two indicators that a binary classifier will perform well. The strongest

indicator is that the target object instance has a unique color/shape compared to

the other object instances (e.g. ball 0, bell pepper 1, and coffee mug 2). Another

performance indicator is how visually near the associated webly dataset is to the

actual ARID object instance crops (e.g. orange *, tomato 0, and cereal box 0). It is
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important to note that as the negative class used in training the classifiers consisted

of MS COCO object categories and that some MS COCO categories overlap with

ARID object categories, it is possible that this had a negative impact on some

classifiers.

36



apple 0 apple 1 apple 2 ball 0 banana 0

0.344 0.121 0.408 0.884 0.4

banana 1 banana 2 bell pepper 0 bell pepper 1 bell pepper 2

0.34 0.359 0.221 0.865 0.495

binder 0 bowl 0 bowl 1 bowl 2 calculator 0

0.044 0.284 0.512 0.455 0.294

camera 0 cap 2 cell phone 0 cell phone 1 cell phone 2

0.226 0.187 0.281 0.382 0.099

cereal box 0 coffee mug 0 coffee mug 1 coffee mug 2 comb 0

0.516 0.439 0.238 0.826 0.189

dry battery 0 flashlight 2 greens 0 keyboard 0 keyboard 1

0.132 0.043 0.307 0.177 0.454

keyboard 2 lemon 0 lightbulb 0 mushroom 0 orange 0

0.378 0.384 0.093 0.079 0.379

orange 1 orange 2 pliers 1 potato 0 scissors 0

0.3 0.345 0.063 0.144 0.275

scissors 1 scissors 2 shampoo 0 sponge 0 stapler 0

0.072 0.162 0.039 0.157 0.166

tomato 0 toothbrush 0 toothbrush 2 toothpaste 0 water bottle 0

0.32 0.073 0.094 0.052 0.012

water bottle 1 water bottle 2

0.007 0.118

Table 4.3: F1 scores for each object instances’ binary classifier when evaluating on
ARID crops.
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Figure 4.10: Precision-recall curves for the per object instance trained binary clas-
sifiers when evaluated on the ARID crops. Other object instances from the same
object category as the target object were excluded from the evaluation due to pos-
sible overlap between object instance descriptions (e.g. lemon 1 and lemon 2 were
excluded when evaluating lemon 0).
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4.4 End to End Evaluation of the Introduced Approach

In this section I evaluate the end to end performance of the introduced ap-

proach. I specifically consider the intersection over union (IOU) metric as it is a

commonly used metric for object detection [4–6, 71]. Two IOU metric thresholds

were considered: 0.1 and 0.5. 0.5 is a standard baseline for object detection while

0.1 indicates an approach’s ability to locate some discriminative region of an object

in an image. As the approach introduced in this work ranks object region proposals

without modifying them and without training on ground truth bounding boxes, the

most discriminative regions tend to be scored the highest by the webly supervised

binary classifier. The top one and top five predictions were considered. The top one

prediction was the highest scoring region proposal. The top five predictions were

found by applying non-maximum suppression with an IOU of 0.1 and then the top

five scoring region proposals were selected as predictions.

4.4.1 Analysis

The performance of the top one and the top five predictions for each object

instance can be seen in 4.11 and 4.12. There was a large performance gap between

predictions that met an IOU threshold of 0.1 and 0.5 which is a testament to the

need for some kind of region proposal refinement. There was not a large performance

gap between the top one and top five predictions. The gap between top one and top

five prediction performance may change with a region proposal refinement approach

and a better way to handle region proposals that identify the same object, but do
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not overlap which are not affected by non-maximum suppression.

A good performance indicator for how well the approach is able to localize

an object is how well its associated binary classifier performed on the ARID crops,

however this was not always the case (e.g. tomato 0). Two possible explanations

for this are that object instances were routinely located in scenes with few other

objects near in color or shape which would make localizing the object easier or

that the region proposals generated by selective search isolated more discriminative

regions of the object allowing for a better classification score than the entire object

would receive.
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Figure 4.11: Percent of object instance bounding boxes covered by the top predicted
bounding box at two IOU thresholds.
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Figure 4.12: Percent of object instance bounding boxes covered by at least one of
the top five predicted bounding boxes at two IOU thresholds.
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4.5 Comparing to Faster R-CNN

In this section I compare the performance of the introduced approach to Faster

R-CNN [33] at localizing object categories present in both ARID and MS COCO.

Faster R-CNN was chosen as it was one of the highest performing object detectors

evaluated in 4.1 and it is also a multiple stage approach like the approach introduced

in this work. Faster R-CNN predictions were chosen by selecting the predicted

bounding box with the highest confidence score for each object category present.

The evaluation metric used was IOU with a threshold of 0.1 as the introduced

approach struggled with values greater than that as noted in 4.4.

4.5.1 Analysis

The introduced approach’s and Faster R-CNN’s performance at localizing each

object instance from all object categories shared between MS COCO and ARID

can be seen in 4.13. Generally the approach introduced in this paper performed

worse than Faster R-CNN. For the object categories apple, orange, keyboard, and

coffee mug performance was comparable between the two approaches. I believe this

is due to the solid colors of those objects and generally homogeneous shapes of them.

The introduced approach did end up outperforming Faster R-CNN when trying to

localize apple 1 which is a yellow apple. I believe that the non-standard color of the

apple led to Faster R-CNN struggling to localize it, while the introduced approach

was able to leverage the descriptive information it was given to localize it.
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Figure 4.13: Percent of object instances from object categories present in both MS
COCO and ARID that were bounded at an IOU threshold of 0.1 for the approach
introduced in this paper and Faster R-CNN.
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Chapter 5: Conclusion and Future Work

5.1 Conclusion

In this work I introduced a three stage natural language guided webly super-

vised object localization approach that could be used in a robotics environment to

detect novel objects. I first established a performance baseline by evaluating the per-

formance of three state of the art deep learning based object detection approaches

and two commercial object detection services on a robotic vision dataset. I then

conducted experiments to evaluate the performance of the separate stages of the in-

troduced approach as well as the end to end performance of the approach. Finally I

compared the performance of the introduced approach to one of the top performing

state of the art object detection approaches. In summary, the main contributions

of this work are as follows:

• Deep learning based object detection approaches can perform well on robotic

vision datasets without being trained specifically for this task.

• The quality of webly datasets generated from natural language descriptions of

objects vary widely. Webly datasets created from objects that are generally

homogeneous in their appearance and are mono-colored tend to be of a much
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higher quality than webly datasets generated from more complex objects.

• The approach introduced in this paper generally performs worse at localizing

objects in a robotics dataset than one of the top deep learning based ap-

proaches on known object categories, but can perform at a comparable level

when the target object meets the criteria needed for the creation of a high

quality webly dataset.

5.2 Future Work

I believe that there are many ways to build upon the work introduced in this

paper. Looking at each individual stage of the introduced approach, there are many

areas for improvement. First, applying some kind of smarter domain adaptions to

the webly datasets to better align them to the real world objects that they are trying

to localize would improve performance as shown in 4.3 and 4.4. Next, replacing the

binary classifier with a single class classifier (such as the approach introduced in [72])

would ensure that a target object was never present in the negative class which could

improve confidence scores. Finally, replacing selective search with a smarter region

proposal system, such as a region proposal network that could detect class-agnostic

objects, could both improve localization as well as decrease the number of proposals

that need to be processed. Another improvement to the region proposal system

would be to find a way to combine multiple proposals that were located near each

other into a singular proposal. Other interesting areas for further experimentation

are applying the system to other datasets and gathering object descriptions from
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multiple sources to investigate how object descriptions impact performance.
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