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ABSTRACT

Title of dissertation: ESTA ES UNA NARANJA ATRACTIVA:
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LANGUAGE GROUNDING SYSTEM TO
NON-ENGLISH DATA

Caroline Kery, Master of Science, 2019

Dissertation directed by: Dr. Cynthia Matuszek and Dr. Francis Ferraro
Department of Computer Science

In this thesis I describe a multilingual grounded language learning system adapted from

an English-only system. This system learns the meaning of words used in crowd-sourced

descriptions by grounding them in the physical representations of the objects they are

describing. My work compares the performance of the system between languages from

different perspectives to identify modifications necessary to attain equal performance,

with the goal of enhancing the ability of robots to learn language from a more diverse

range of people. I first analyze Spanish using translated English data, and then extend this

analysis to a new corpus crowd-sourced Spanish language data. I then take the insights

gained from this analysis and repeat the experiment using Hindi. I find that with small

modifications the system is able to learn color, object, and shape words with comparable

performance between languages.
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Chapter 1: Introduction

With widespread use of products like Roombas, the Amazon Echo, and drones,

robots are becoming commonplace in the homes of regular people. We can see a future

where robots are integrated into homes to provide assistance in many ways. This could

be especially beneficial to elders and people with disabilities, where having someone to

help with basic tasks could be what allows them to live independently [2].

Natural language is an intuitive way for human users to communicate with robotic

assistants [3]. In order for this communication to happen, robots need to first learn what

language means, and how it maps to their surroundings. Grounded Language Acqui-

sition is the concept of learning language by tying natural language inputs to concrete

things one can perceive. This field of study looks to train language and perceptual skills

simultaneously [4], in order to gain a better understanding of both. This is a concept that

crops up often in human language learning. A child learns what the word “dog” means by

encountering many examples of dogs and building an association between the word and

the things they perceived. In robotics, work in this field is critical for building robots that

can learn about their environments from the people around them.

For such a system to truly be useful for the average user, it is not enough to merely

train a robot how to recognize everyday objects and actions in a lab. Much like toddlers
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who grow up in a family and surrounding culture, a service robot should be ideally able

to learn the acronyms, nicknames, and other informal language that happens naturally

in human interaction. It logically follows that a truly well-designed system should not

only be able to handle vocabulary differences between users but also users that speak

various languages. There are thousands of official languages spoken around the world,

and many more dialects. In the United States alone, around 21 percent of residents speak

a non-English language as their primary language at home [5].

While there has been past work to apply grounded language learning systems to

multiple languages [6, 7] to my knowledge there have been few efforts in the space of

non-English robot language learning where comprehensive analysis was done to diag-

nose differences in performance between languages and work to mitigate these differ-

ences. Grounded Language Acquisition takes many of its roots from Natural Language

Processing, which in the past has had an unfortunate habit of focusing on English-centric

methods. This often leads to systems that perform very well in English and “well enough”

in other languages.

In this thesis, I take an existing grounded language acquisition system [8, 9] origi-

nally designed for English and examine what adaptations are necessary for it to perform

equally well for two other languages. I start with the simpler task of extending the sys-

tem to Spanish data, and analyze the performance of translated English-Spanish 3.2, and

novel Spanish data 3.4. I then follow this same formula with Hindi 4.1, a language that

has both a different script and much different morphology to English. Through this anal-

ysis, I explore places where linguistic differences can impact performance, and examine

what adaptations can be generalized across new languages.
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There are three novel contributions of this work. First, through my analysis of how

an existing system can adapt to new languages, I identify a trade-off between the complex-

ity of the system and the ease of its applicability across languages. I also demonstrate and

propose a framework for adapting an existing system to data in a new language. Finally,

I explore the utility of using machine translated data to estimate system performance on

a new language.

This work has been adapted into a paper for the NAACL 2019 Workshop “The

Combined Workshop on Spatial Language Understanding and Grounded Communication

for Robotics. [10]”
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Chapter 2: Background

2.1 Related Work

In this section, I describe relevant previous works in grounded language acquisition,

computer vision, and multilingual natural language processing.

2.1.1 Grounded Language Acquisition

The problem of grounding natural language to physical representations is highly

relevant to robotics research. In many cases the hardware exists for robots to perform

tasks, but the intelligence needed to interact with humans and know what they require

does not. Many people are attempting to tackle this problem from different perspectives.

Some works seek to ground navigational commands, often in the form of “take object x

to place y” [3, 8, 9, 11–18], where the high-level path to follow, correct object to interact

with, and the overall goal must be inferred from the sentences. Other works (like this

one), concentrate on identifying objects through the attributes people use to refer to them

[3, 14, 15, 19–21] while some focus on higher level concepts like what terms are used to

refer to objects in relation to each other [18, 22]. Some works move past just the visual

percepts, and also ground properties related to weight, sound, or texture [14, 15, 23].

4



Other works focus on tying events or actions to natural language utterances, as a means

to learn what those actions mean [4, 6, 7, 12, 21, 23]. There is a large focus in using

graphical methods to represent the meaning of commands [3, 6, 7, 14–18, 20]. My work

is different from these, as it looks at the tokens used to describe an object in isolation,

without reference to context. As the utterances I am working with do not have an action-

object-goal structure, it is less intuitive as to how one would structure such a graph.

There are a few examples of language grounding in multiple languages [6, 7]. Sev-

eral works tested their system in a language besides English and presented the results

for both. While this showed that their systems could handle multiple languages, none

provided an in-depth analysis into the differences in performance for their systems, or

extrapolated past the two languages. My work seeks to examine and identify causes of

differences in performance. While this thesis mainly concentrates on extending to Span-

ish and Hindi, it seeks to do so in an organized way that can be easily generalized to

additional languages.

2.1.2 Computer Vision and NLP

The work presented in this thesis is also related to several fields within computer

vision. The original system makes use of features extracted from RGB-D images [24,25].

Object recognition revolves around the task of recognizing objects in a scene at varying

angles, lighting, and levels of occlusion, and works in this area [24–27] are highly relevant

for grounding language in robotic systems.

There is a significant community within computer vision that works with both lan-
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guage and image data. The internet today has many sources of image data paired with

descriptions or captions. Works in image question-answering [28–32] attempt to extract

image features paired with language to answer specific questions about images. In a

similar vein, works in image captioning [30, 33–38] attempt to pair images with natural

language sentences or keywords that accurately describe what is in the image. My work

could also be said to be a image question-answering problem, where the system attempts

to learn attributes of images, and then answer if new images have those attributes. Some

image captioning works also concentrate on multilingual captions [28,33–35], where cap-

tions in one language paired with images may also sometimes be used to generate captions

in another language. One large difference between this thesis and the image-captioning or

question-answering work is that the image data in this thesis includes depth information,

which can complicate systems that attempt to find important sections in a scene to tie to

language.

2.1.3 Multilingual Natural Language Processing

There is a strong multilingual community in the broader field of NLP working in

many different aspects, such as machine translation [39] or multilingual question answer-

ing [28]. Some works dive deep into specific language pairs to evaluate how differences

between the languages complicate translation [40–42]. Analysis such as these helped to

shape my analysis when comparing the English, Spanish, and Hindi data performance.

There are quite a few examples in literature of taking a system designed for English

and adapting it for multilingual use [43–46]. Sometimes this involves manually recreating
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aspects of the system to match the rules of the other language [44]. Other projects look to

make an English system “language agnostic” (not biased towards any one language) by

editing parts of the preprocessing algorithm to be non-language specific [43, 47]. It may

seem attractive to make a system that is completely language-agnostic, but even general-

ized preprocessing techniques are often still biased towards languages with English-like

structures [48], and in avoiding specifying anything about the language one can miss

out on common properties within language families that could increase performance. In

this thesis, I strive to find common ground between making my system as generalized as

possible and taking specific linguistic structures into account if necessary.

One significant difference between my research and many works in grounded lan-

guage acquisition is that the system is entirely trained off of noisy short descriptions

collected without filtering. This has very different characteristics from the more common

corpora built off of newswire and other forms of well-written text (a very common one is

multilingual Wikipedia), or data that has been placed into structures like parse trees [49].

My data is prone to errors in grammar and misspellings, and the descriptions collected

tend to use more simplistic vocabulary than one might see in newspaper articles. In this

regard, my data is most like that of works that use Twitter data [50]. However, in contrast

to [50], the system I am using only uses token extraction to find the relevant images to

extract features from, rather than extracting all features from just the language.
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2.2 The Original Grounded Language System

2.2.1 Introduction

In this thesis, instead of building a new grounded language system, I chose to start

with an existing system presented by [8] and expanded on in [9] and [11], which I will

refer to throughout this thesis as the GLS (grounded language system). This system

attempted to learn physical groundings of colors, shapes, and objects by tying color and

depth data derived from images of various items with natural language descriptions of

the images. The validity of these groundings was then tested with the downstream task

of object recognition. My work concentrates on exploring how well this existing system

can be extended to multiple languages, and identify potential complications that need to

be considered when doing so. The next sections will introduce different aspects of this

system, which are shown visually in figure 2.1.

2.2.2 Part 1: Image Collection

Pillai et al. used a Kinect depth camera to collect images of fruit, vegetables, and

children’s blocks of various shapes (see figure 2.2 for examples). There were a total of

18 object types, with four instances of each object. Each instance had around five images

taken using the depth camera. For each image, the Kinect outputted a regular color image,

and a three-dimensional version consisting of a point cloud where each point had a color

and a location in three-dimensional space. Each of the regular images were then masked

to show only the object (see the “masking” block in figure 2.1).

8



Figure 2.1: This diagram shows the data flow of the original grounded language system.

The boxes indicate which parts of the diagram correspond to which section.

Figure 2.2: Examples of images of objects in the original dataset.
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For each of the point cloud images, RGB and HMP-extracted kernel descriptors [24,

25] were extracted from the RGB-D data. These were used as the color and shape features

respectively for the images later when training the color, shape, and object classifiers.

2.2.3 Part 2: Image Descriptions

The next step after masking the regular images of the objects was to collect descrip-

tions of these images in English using Amazon Mechanical Turk. About 85 descriptions

were collected for each instance, for a total corpus of about six thousand descriptions.

The workers were shown the masked images of the objects, and asked to provide written

descriptions. As I discuss in section 2.5, my own data collection process replicated this

setup.

2.2.4 Part 3: Tokenization and Positive/Negative Example Extraction

In the original system, the English descriptions were put through a series of pre-

processing steps. First, words were lower-cased, and punctuation was removed. Next,

generic nltk stop words [1] were removed (see section 2.4.3 for more information). The

descriptions were then lemmatized (see section 2.4.2.1 for details).

The next step was to figure out which tokens should be learned by the system. For

this, the authors used TF-IDF (term frequency inverse document frequency) metrics [9].

This allowed them to choose tokens that were used to describe multiple instances, but

not used for everything. Note that this step was removed in this thesis, as it was deemed

sufficient to filter out tokens that did not have enough positive or negative examples.
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Once the set of tokens had been identified, the system had to decide which instances

could be classified as positive or negative examples of a token. The system used the Me-

chanical Turk descriptions for this purpose. It used a “bag of words” approach, where it

counted how many times a token appeared in any description of each instance, without

reference to the context of its use. Images that were described with a particular token

often (more than five times) were assumed to be examples of that token. To find negative

examples of tokens, the GLS used document similarity metrics to compare the descrip-

tions for instances in vector space [11]. The instances that were sufficiently far away in

vector space using cosine similarity from the identified positive instances for a token (and

had also never been described with that token) were then chosen as negative examples

of that token. For example, suppose the system were finding positive and negative in-

stances for the token “orange.” A positive instance identified might be “carrot 4.” In the

document vector space, the instances with the descriptions most different from “carrot

4” would be “arch 1” and “cuboid 4,” while instances like “tomato 2” and “cucumber 3”

would be closer but still different enough to possibly qualify as negative examples of the

token “orange.”

Tokens that did not have any negative examples or had fewer than three positive

examples were thrown away, with the assumption that there was not enough data to learn

a classifier.

For more information about the process of finding positive and negative examples,

and how I expanded on them, see Appendix A.
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2.2.5 Part 4: Learning Classifiers

In part 1 (2.2.2) shape and color features were derived for each image. Part 3 (2.2.4)

identified important tokens and found sets of positive and negative example instances

for each token. These two pieces were now brought together for this section, where

for each token found in part 3, three binary classifiers were trained using the shape and

color features of the instances that were defined as positive or negative examples of that

token. These classifiers learned to recognize whether a new image was a positive or

negative example. Logistic Regression was used for these classifiers, though in principle

any classifier type could be used. The underlying idea behind training three classifiers

per token was that a new token might be describing a color, shape, or object and a robot

with no previous knowledge would not inherently know which category the token should

belong to. Thus for each token, a color classifier was trained using the RGB features, a

shape classifier was trained using the shape features, and an object classifer was trained

using both shape and RGB features. Each classifier attempted to differentiate between

what were examples of the token and what were not using the features for its particular

category.

2.2.6 Part 5: Evaluation

The final step of original system was evaluation, where the authors attempted to

figure out how well the classifiers learned by the system were able to identify new pos-

itive and negative examples of the tokens. During the training phase, one instance of

each object was held out for testing. In the evaluation phase, the system first identified

12



which instances were positive and negative examples of the tokens found during training.

As with training, positive instances were ones that had been described at least five times

with that token, and negative instances were those testing instances that had both never

been described with that token, and were also the furthest away from the positive testing

instances in document vector space. These instances were then presented to the trained

token classifiers, and the classifiers were scored by how well they could tell which in-

stances were positive and which were negative. It is important to note that if the system

did not identify a particular instances as positive or negative for a token, it would not be

presented to the token classifier. This was because the system was unsupervised, and thus

the only “ground truth” it could compare results to was what was found dynamically. The

final score for each classifier was given by its F1-score (the mean of precision and recall).

It is important to note that in the scores cited for the system in the original papers

[9, 11], only tokens relevant for each category were included. For example, the average

shape classifier score would include the shape classifier score for “round” but not the

one for “orange.” In this thesis, I chose to take a more general approach with less manual

intervention, so the scores reported for each category will include all tokens learned unless

otherwise specified.

2.3 Language Features: English, Spanish, and Hindi

In this thesis, I examine how the GLS is able to perform between English, Spanish,

and Hindi. All three of these languages are spoken by many people around the world,

and there are many high and low-level differences between them. This section discusses
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some of the high-level differences across languages that become relevant in this thesis.

See [51–53] for more detailed descriptions of Spanish, English and Hindi.

A broad difference between these three languages are the language families they

come from. Spanish is characterized as a Romance language, while English is Ger-

manic with heavy influence from Romance languages [51]. Hindi is characterized as

Indo-Aryan. This has many implications for the underlying structures and phonemes of

the languages. English and Spanish both often order phrases in the order of subject-verb-

object, while Hindi primarily uses subject-object-verb ordering [53]. Hindi is also much

less strict with its word ordering. In both Spanish and Hindi, nouns can have genders, and

many adjectives must be inflected to match the gender of the noun they are paired with.

English does not inflect adjectives to match nouns although an English speaker may add

affixes like “er”, or “est” to indicate degree. All three languages inflect verbs for present

and past tense, but Spanish and Hindi both have many more inflections than English,

which prefers to use auxiliary words like ”will” or ”should” to indicate additional tenses

or moods. Hindi uses the Devanagari script [53]. English and Spanish both use the Latin

script, though Spanish uses accents and English (mostly) does not.

In this thesis, the system is mainly concerned with nouns and adjectives, where

words are considered in isolation to each other. Thus it was mostly the differences in

adjective and noun inflection and script usage that I concentrated on.
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2.4 Preprocessing Techniques

A number of changes had to be made to the data preprocessing system in the original

paper to make it usable to other languages. Particular care was taken to select preprocess-

ing steps that could be generalized across as many languages as possible. These steps fell

into a few categories, which are discussed in more detail below.

It must be noted that along with the preprocessing system, small changes had to be

made in the codebase itself to handle non-English data. File encodings had to be set to

utf-8, in all file I/O operations and the Python files themselves. The default encoding is

ASCII, which does not include most non-English characters.

2.4.1 Basic Data Cleaning

In this section, “basic data cleaning” is referring to steps like removing punctuation

or lower-casing words (when applicable). These steps are essential for proper token seg-

mentation. Several small changes had to be made to the original system so that it could

also clean Spanish and Hindi text. Originally, the English system simply removed all

characters that were not alphanumeric using regular expressions. This was not trivial to

extend to Hindi characters and Spanish accents, so instead a list of punctuation characters

were iteratively removed. The original list came from nltk [1] and this list was extended

to include terms like the Spanish upside-down question mark, and the Hindi full stop (see

figure 2.3 for examples).
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Figure 2.3: Examples of the basic data cleaning applied to the language data. This re-

moved any punctuation and lower-cased tokens when applicable.

Figure 2.4: Examples of how tokens can be modified by a stemmer versus a lemmatizer.

2.4.2 Removing Stems

In many languages, words can be formed by taking a root “stem” of a word like

“walk,” and conjugating it in different ways depending on context like “they are walking,”

or “I walked.” In many natural language processing tasks, it is beneficial for different con-

jugations of a word to be recognized as being essentially the same word. To accomplish

this, processes like lemmatization and stemming exist with the goal of taking conjugated

words and reducing them to their non-conjugated forms.
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2.4.2.1 Lemmatization

In the original English system, lemmatization was employed to remove conjuga-

tions from words. Lemmatizers are tools that attempt to replace conjugated words like

“making” with correctly spelled root words like “make”. These systems can be complex,

and it proved difficult to find accessible implementations of non-English lemmatizers,

leading to the eventual use of stemmers in this work.

While lemmatization was replaced in this work, it must be noted that this might not

continue to be a necessary decision. Many works have endeavored to create lemmatizers

for languages like Spanish [54,55], French [54,56], Italian [56,57], Hindi [56,58], Serbian

[59], and Arabic [60]. Some of these lemmatizers were designed to be more rule-based

[58,60], while many more have made use of annotated corpora and built statistical models

to accomplish the task [54,55,57,61]. One work [54] utilized parallel corpora to bootstrap

off of existing English lemmatizers. One would hope that in the future, one or more of

these tools will become more accessible.

2.4.2.2 Stemming

Stemmers are the less sophisticated version of lemmatizers. They also seek to re-

move conjugation from words but do not make guarantees that the results will be valid

words. Stemmers can come in many forms like with the lemmatizers mentioned above,

with the simplest being an algorithm that simply “chops off” affixes attached to words.

In English, this sort of stemmer would reduce “making” to “mak,” and also probably re-

duce “make” to “mak” as well (see figure 2.4). This sort of system can work very well
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for conflating different conjugations of a word, but can fall short for unusual forms like

“running,” which a very rough stemmer would likely reduce to “runn” which would not

conflate with uses of “run”. I make use of the slightly more sophisticated nltk Snowball

stemmer [62] when removing conjugation from Spanish and English text. For Spanish,

the Snowball stemmer attempts to remove affixes in a methodical way by first finding the

area of the word that may include a suffix, and then removing the longest common suffixes

in order by part of speech (where some suffixes are not searched for if one was already

removed in a previous step). Due to availability, a simple flat affix-chopping stemmer [63]

is employed when removing conjugation from Hindi text.

2.4.3 Removing Stop Words

In natural language systems, “stop words” are defined as words that do not con-

tribute to the meaning of the sentence they are in. In English, these are words like “the,”

“an,” or “of,” which are essential to creating readable English, but are mostly used to

connect other words. Many lists of general stop words exist for different languages. The

original English system made use of one such list from nltk [1] to remove stop words

from the English text. This was an important step because it ensured that the system did

not attempt to learn groundings for words like “and”. At the same time, I found that there

were a number of words like “object,” “picture,” or “color” that were used so often in

the object descriptions that they held little physical meaning. These are designated as

“domain-specific stop words,” which refer to words that in general cases hold meaning,

but for the particular domain have been rendered meaningless by their frequent and var-
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Figure 2.5: Comparison of pre-built stop word list and tokens identified with IDF. Note

that many regular stop words were not identified with the IDF form, which may indicate

that a combination of manual and IDF-found stop words might be the most thorough

method.

ied use. I found that these words could be identified by their inverse-document-frequency

(IDF), which was found by taking the total number of instances where a token appeared

in the descriptions, and multiplying its inverse by the total number of instances, then tak-

ing the log of the result. The comparison of the terms found this way to a general stop

word list is shown in figure 2.5. The effects of stop word removal using each method are

explored in Chapters 3, 4, and 5.

2.5 Amazon Mechanical Turk

This thesis makes liberal use of Amazon’s crowd-sourcing platform Mechanical

Turk. Crowd-sourcing is a method for data collection in which the researcher posts tasks

to a large online community and asks them to complete them for compensation. This sys-

tem has benefits and drawbacks. On the one hand, it often allows researchers to collect

a lot of diverse data in a short amount of time. On the other hand, this data is inher-
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Figure 2.6: Sample actual descriptions of a cucumber, as collected on Mechanical Turk.

ently noisy, and it can be hard to guarantee that the people completing the tasks have the

relevant skills, or are even taking the tasks seriously.

The grounding system used in this thesis was designed with the motivation of han-

dling unconstrained descriptions from regular users, so general noise caused by diverse

users who were giving an honest attempt at the task was actually desirable (see figure

2.6).

In the original English data collection and my collection of Spanish and Hindi data,

descriptions were only excluded when the worker explicitly did not follow the directions

(such as answering in the wrong language, or giving text unrelated to the image provided).

For my data collection, additional checks had to be added to account for users utilizing

automatic translation tools. These are talked about in sections 3.4 and 4.3.1. The direc-

tions and a sample Mechanical Turk task used for the Spanish and Hindi data collection

(called a HIT which stands for “human intelligence task”) are shown in figures 2.7 and

2.8. The data collection was approved as IRB exempt.
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Figure 2.7: The directions shown to the Mechanical Turk worker in English, Spanish, and

Hindi. Note that the English version is shown for clarification, and is not exactly the same

as what was used to collect the English data.
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Figure 2.8: A sample of the form that was presented to the workers in each language.

Each task asked them to annotate five images.
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Chapter 3: Expanding the System: Spanish

3.1 Introduction

The focus of my thesis is to examine the transferability of the English system to non-

English text. I started with Spanish, for several reasons. The first was because Spanish

is a very common language in the United States. The second was that Spanish has very

similar grammar, characters, and vocabulary to English, minimizing the potential causes

of differences in the system’s performance. Through the lens of analyzing this simpler

problem, I sought to establish a general analytic framework, which would make it easier to

then compare the performance of languages like Hindi that differed strongly from English.

When I examined related works that analyzed language pairs, several worked with

Spanish and English specifically [49, 50]. These papers drew attention to differences

in the languages that could potentially cause performance differences for NLP systems.

For the GLS, it was the morphological richness of Spanish as well as the high rate of

inflection [49] that ended up causing the most differences.
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Figure 3.1: Breakdown of meaning preservation for English and English-Spanish-English

translation.

3.2 First Steps: Google Translate

In order to get baselines for how a Spanish corpora might perform, I translated the

English descriptions to Spanish through Google Translate’s API [39]. As a check on the

quality of translation, the translated text was then translated back into English, again using

Google Translate. I compared the English and back-translated English phrases manually

to see if their overall meanings were preserved. A total of 2,487 out of the 6,120 (around

40%) phrases remained exactly the same between translations. For the remaining 60%,

five hundred back-translated phrases were randomly selected and manually compared to

their original English version (see table 3.2 for examples). Approximately 87% of the

phrases examined preserved their meaning between translations, so I estimated from this

that about 90% of the phrases were translated accurately (shown in figure 3.1).

For those phrases that did not translate accurately back to English, I observed a

number of patterns. Some of them were simply due to ambiguities with the meaning of a
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Figure 3.2: Samples of English descriptions that were translated into Spanish and then

back into English. The column on the right indicates if the meaning of the original English

text matches the final back-translated English

word where the wrong one was selected during one of the translations (as an example, for

the bottom row of table 3.2, “forma” can mean “shape” or “way”). A common example of

this was the phrase “this is a red cabbage” becoming “this is a red wire,” which happened

six times out of the five hundred selected phrases. Another error that occurred three times

was “laying on its side” becoming “set aside,” since the Spanish phrase “puesta de lado”

can mean “put sideways” but also “set aside.”

Other translation errors were possibly related to differences in how Spanish pro-

nouns and adjectives are used. The pronoun “it” commonly became “he,” as Spanish

nouns are gendered and pronouns must agree with the noun they are describing. Phrases

with many adjectives saw them switching places with each other and the nouns they were

attributed to. For example: “This is a picture of rectangular shaped blue colored solid

block” became “This is a solid block photo of blue with rectangular shape (see figure
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Figure 3.3: Proportion of color word forms in un-stemmed translated Spanish.

3.2).” I attributed this confusion to differences in the rules of adjective ordering between

English and Spanish.

3.3 Scores for English and Google Translated Spanish

As a preliminary test of how the system could handle Spanish data, I ran the clas-

sifier on the translated Spanish and English corpora with minimal preprocessing (lower-

casing and removing punctuation) and tested the color tokens only. My goal was to get a

baseline for how the system would perform, using tokens that would be easy to compare

between languages. It was expected that the translated Spanish corpus would perform

worse, since it was not perfectly translated. When the tests were run, the translated Span-

ish did perform slightly worse (see figure 3.5), but an additional issue emerged.

Spanish, unlike English, has adjective-noun agreement. This means that a simple

color word like “red,” could translate to “rojo,” “roja,” “rojos,” or “rojas” depending on the
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Figure 3.4: The color tokens learned for raw English and raw Google-translated Spanish

gender and plurality of the noun it is describing (see figure 3.4 for the list of color words

learned by the system for English and translated Spanish). This meant that the possible

positive instances for color words could be split between the various forms, since different

descriptions of the same object might use a different form depending on the structure of

the sentence. One can see from figure 3.3 that in the overall translated corpus, the color

words were split between different conjugations. This led to the hypothesis that some

form of lemmatization or stemming would be necessary for Spanish in a way that would

have been less essential for English.

I decided to run both the translated Spanish and English descriptions through a

Snowball stemmer [62]. I chose this stemmer as it is readily available for a wide variety

of languages through the nltk library [1] (see section 2.4.2.2 for more information). The

results can be seen in figure 3.5.

One can see from figure 3.5 that applying stemming to the translated Spanish de-

scriptions had a small positive effect on the F1-scores of the color classifiers. It also
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Figure 3.5: Average scores for color-related tokens between English and translated Span-

ish. Note that the English stemmed scores were slightly lower, but this was not found to

be related to issues from the color words being stemmed, as stemming the English color

words had no effect on the number of positive instances. The differences in score were

likely caused by changes in the negative examples chosen for the two “green” tokens,

which had the largest score difference between raw and stemmed.

slightly raised the average number of positive instances per token, since stemming al-

lowed instances that were split between small counts of several forms of a word to see

them as the same word. One can see this in more detail in figures 3.7 and 3.8, which show

the difference between the average of the scores for the various forms of color words in

the unstemmed data (for example amarilla and amarillo would be averaged as amarill*),

and the stemmed score of the stemmed form.

One can see in figure 3.7 that for the three colors shown, stemming always increased
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Figure 3.6: Average number of positive instances for color words.

the average precision for that color, but could reduce recall. In addition from figure 3.8,

one can see that some of the colors had a large increase in average positive instances,

while others did not. This was likely due to a case where many instances labeled with

“rojo” also saw enough “roja” that it was a positive instance for both. When looking at

the counts per instance, I found that for the 23 instances that had the token “roj” in their

stemmed descriptions, 16 were positive examples of both “roja” and “rojo” in the un-

stemmed version. For objects like cabbages (coles) and plums (ciruelas), “roja” was used

dramatically more, while for tomatoes (tomates), cubes (cubos), and cylinders (cilindros)

“rojo” appeared more.

As a final check, I examined the number of occurrences over all descriptions of each

instance of the stemmed and un-stemmed versions of color words. For most of the colors,

instances were often split between possible conjugations. For “amarill” (yellow), there

were five instances where the individual counts of both un-stemmed forms of yellow:

“amarillo” and “amarilla” were less than the threshold for a positive instance, while the

stemmed version “amarill” was able to overcome that threshold. This is shown in the
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Figure 3.7: Comparing the average of the unstemmed scores for various word conjuga-

tions for the translated Spanish color words and their stemmed score.

Figure 3.8: Comparing the number of positive instances between raw word forms and

stemmed for the translated Spanish color words.
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Figure 3.9: Sample of instances that had more than five occurrences of “green” in the

English corpora.

more dramatic increase in number of positive examples in figure 3.8. The effect on the

scores is more complicated, since very yellow instances often had 50 or more occurrences

of “amarill.” Because of the inherent messy nature of the data, instances with low but still

significant counts of tokens (greater than five occurrences) were much more likely to be

false positive examples that could damage a classifier. One can see this in figure 3.9 where

the instance “eggplant 1” was called green seven times in the English data. This is clearly

because the stem of the fruit is green. However, a simple classifier may be confused

by this instance, since it is mostly purple. This could lead a “green” color classifier to

incorrectly label purple objects as green.

3.4 Collection of Real Spanish Data

Exploring comparisons between English and translated Spanish helped to predict

how Spanish descriptions might differ from English. However, in order to truly compare

the languages, real Spanish data was needed. For this, I followed the methods used by

Pillai et al. [9] as closely as possible to obtain comparable Spanish data to their English
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data. I utilized Amazon Mechanical Turk (see section 2.5) to collect Spanish descrip-

tions of the images in the database. Workers were required to have at least fifty HITs

accepted before being eligible to work on my HITs. To avoid biasing the workers towards

a particular type of description, I provided no example descriptions.

I excluded data from a small number of workers who did not follow the directions

(for example, responding in English or randomly selecting adjectives) and obtained addi-

tional high quality data to replace their submissions. Figure 3.11 shows examples from

the workers who submitted seemingly random answers. These workers were especially

problematic, as they contributed to a total of 2,541 descriptions that had to be excluded,

reducing the total number collected from 7,645 to 5,104. All other submissions were ac-

cepted. This allowed for a wide variety of answers. One worker might simply name a

carrot, while another would describe how it tastes, what foods it goes well in, or where it

comes from (see figure 5.3 in section 5.1 for examples). The English dataset was similarly

noisy. This is desirable, as a robot that is trying to learn language from an average user

must be able to handle the many ways in which a user might choose to introduce a new

object.

One possible danger in collecting Spanish data that was considered was that some-

one might be responding in English and using a translation tool. I attempted to check for

this by comparing the real Spanish data to the translated Spanish data. I found that short

descriptions like “Esto es un limón” (this is a lemon) had a large amount of overlap, but

in general most of the real Spanish descriptions were longer and did not mirror any of the

translated results. More work was put towards this issue with the Hindi data (see section

4.2). In the future, it would likely be useful to employ a more sophisticated method of
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Figure 3.10: Total number of descriptions collected per object type.

ensuring Spanish fluency.

In the end, the total number of Spanish descriptions per object type was on average

slightly lower than in the English corpus (see figure 3.10). I controlled for this in my

analysis by taking several random subsets of both corpora such that each instance had an

equal number of Spanish and English descriptions and averaging the results.

3.5 Comparison of Spanish and English

3.5.1 Overall Results

In figure 3.12, one can see the averaged F1-Score for the color, shape, and object

classifiers between the original English and the collected Spanish descriptions. Each score

was found by averaging the results of twenty evaluation runs each of ten train-test splits.

33



Figure 3.11: Samples of random descriptions that were found to have been submitted.

Note that these descriptions matched objects in the data set, but not the object being

presented at the time to the worker.

Figure 3.12: Average F1 scores for English and Spanish classifiers of each type.

These scores were averaged across all tokens learned, without specifically sub-setting for

the tokens that naturally represented colors, shapes, or objects. In general, the scores were

fairly similar, varying between 0.8 and 0.84. From the small differences one can see that

stemming appeared to benefit the Spanish data for learning object and shape classifiers but

slightly hurt the performance for color classifiers. Un-stemmed English performed better

than either Spanish version for color and object classifiers, but worse for shape classifiers.

Much like with Spanish, stemming appeared to help the shape and object classifiers, and
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hurt the color ones.

3.5.2 The Effect of Stemming

As one can see from figure 3.12, the effect of Stemming on the F1-Scores of the

English and Spanish classifiers was not consistent. For both the object and shape classi-

fiers, stemming appeared to either benefit or have little impact on the object recognition

task. For the color tokens, stemming either barely impacted or lowered the scores.

Stemming can cause words to be conflated correctly or incorrectly. Incorrect stem-

ming can certainly cause problems, where tokens are conflated that shouldn’t be, or words

that should be conflated are not. However, as discussed earlier, it is also possible for

correct stemming to cause an instance to barely meet the threshold for being a positive

example of a particular token 3.9, when that instance is not a good example of that to-

ken in reality. This is a particularly likely occurrence due to the inherent messiness of

crowd-sourced data and the fact that the GLS was basing its classification label off of

these messy descriptions. Due to this, and the high amount of conjugation in Spanish, it

was decided that stemming would likely be a good step to employ with Spanish regardless

of the scores.

Figure 3.13: Object Scores for words that could be written with and without accents.
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3.5.3 Accents

Another difference that stood out when comparing the real Spanish data with trans-

lated data was the use of accents. Unlike with the translated data, the real Spanish data

was inconsistent with its usage of accents. While a majority of workers used accents

where they were supposed to go, a not-insignificant percentage of them left them out

(see figure 3.13 for examples). This is likely because those workers did not have easy

access to a keyboard with accented characters, and thus chose to leave them off. One

can see in figure 3.13 that for common accented words, this had the effect of splitting the

data. Luckily, the snowball stemmer [62] automatically removed these accents. While

this could potentially cause words to be conflated incorrectly, there are actually very few

cases in Spanish where the accented and non-accented version of a word have different

meanings. This is mostly the case with terms like “si” (if) and “sı́” (yes), which the sys-

tem would likely not be learning groundings for anyway. One can see in figure 3.13 that

after stemming, the counts for the accented and unaccented versions of the token were

combined. The combined classifier did not always have a higher score on the testing data,

for similar reasons to those discussed in section 3.5.2.

3.5.4 Stop Words

Without employing stop word removal during preprocessing, the system learned a

total of ten words that could be classified as general stop words for English and eight for

Spanish (see figure 3.14). This happened because for each of these words there was at

least one instance where the word did not appear in any description. For Spanish, the
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Figure 3.14: Stop words that appeared often enough to have classifiers trained on them.

A pink box with a dotted border indicates a stop word from the language’s nltk stop word

list [1]. A blue box with a dashed border indicates this token was in the top 2% tokens

by ascending IDF score. A solid border and purple box means the token appeared in both

lists. Note that in the Spanish data, both amarillo (yellow) and rojo (red) were used at

least once for enough instances that they fell in the bottom 2% by IDF scores. Many of

these were from incorrect labeling, which indicates that it might be beneficial to introduce

a threshold for when a token has “appeared” in the descriptions for an instance.

tokens “de,” “es,” “una,” “y,” and “se,” and for English the tokens “this,” “is,” and “a” all

had zero negative instances and were appropriately removed.

Figure 3.14 also shows tokens that appeared in the bottom 2% of tokens when sorted

by IDF score. This was my way of estimating “domain-specific stop words”. Note that

there were quite a few nltk stop words that also had very low IDF scores. The IDF method

identified tokens like “object,” or “looks” which were used very often in the English

descriptions and ideally should be ignored. Figure 3.15 shows how removing each type

of stop word impacted the scores of the raw classifiers. For both languages, the greatest

impact appeared to come from removing both general purpose stop words and low-IDF
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Figure 3.15: The graph demonstrates the impact on the average F1-score of removing nltk

stopwords versus removing the lowest 2% tokens by IDF score for English and Spanish.

The error bars show how the variance of these scores among the tokens averaged.

tokens, though the impact was small in all cases.

It must be noted that for the Spanish data, the tokens “amarillo” (yellow) and “roja”

(red) were included in the bottom 2% of tokens by IDF score. These tokens were com-

mon due to the prevalence of red and yellow objects in the dataset, and a few erroneous

descriptions. This suggests it might be beneficial to explore a more nuanced approach to

finding domain-specific stop words in the future.
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3.5.5 Token-Level Comparison

Figure 3.12 shows the average difference in F1-scores between the English and

Spanish data. This section looks deeper into the performance differences by qualitatively

examining objects, shapes, and colors that individually had significantly higher classifier

scores in one language than the other, and exploring the differences in how the English

and Spanish systems grounded these concepts.

The sections below concentrate on objects, shapes, and colors that were used often

enough in both the Spanish and English datasets as to be learned. This means that these

tokens appeared at least five times in descriptions of at least three different instances. Each

language had a number of words where the direct translation was not used very often or

at all in the other language. For comparisons, words were paired together even if they

were not direct translations if they were used in exactly the same context (for example

“espiga” means spike in English, but it is used in the same way an English speaker would

use “cob” with “cob of corn”). Each category section focuses on tokens related to that

category with greater than 0.05 difference in the F1-Score between Spanish stemmed and

English stemmed.

3.5.5.1 Object Tokens

For this section of classifiers, I examine object-related tokens with large (greater

than 0.05) performance differences between the Spanish and English versions. Four En-

glish tokens were selected, corresponding to seven Spanish tokens, as three of the English

tokens had multiple translations. The scores for these tokens and their number of occur-
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Figure 3.16: Object tokens with large (greater than 0.5) differences in F1-score between

Spanish and English.

rences in each dataset are shown in figure 3.16. For all three tokens, the precision was

what caused the difference in F1 scores. That is, the Spanish tokens were more likely to

incorrectly label their negative instances as positive. For all object classifiers learned, the

average precision was 0.049 points lower for Spanish stemmed than English stemmed,

while the recall was about the same.

Thus we have the four tokens banana, cabbage, carrot, and vegetable, which per-

formed better in English than in Spanish. Figure 3.16 shows that the Spanish tokens

tended to have lower counts, but this did not mean that the English system had more to

learn from. The GLS does not care about how many times an instance is described with

a token, so long as it exceeds a given threshold. It made more sense to then look at the

positive and negative instances identified for each token.

Figure 3.17 shows the various positive instances identified for vegetable tokens in

Spanish and English. Since the dataset has many vegetables, there are a variety of images

being used. These images were the “ground truth” for the tokens shown. That is, the
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Figure 3.17: Positive instances found for the vegetable tokens in Spanish and English

(stemmed).

scores from the tokens were partially based on how well the token classifiers trained on

some subset of these images (along with negative examples) could recognize the rest of

the images as positive examples. The images in figure 3.17 show where the score differ-

ence might come from. The English token was trained and tested on mostly cucumbers

and limes, while the Spanish “vegetal” token also learned cabbages and carrots as posi-

tive examples and “verdur” simply had fewer examples overall to learn from. This was

likely due to differences in word usage between the languages. Simply put, the Spanish-

speaking workers were more likely to mention that something was a vegetable than the

English-speaking ones. In this, the Spanish classifier for “vegetal,” while performing

worse, was actually better since it had a more thorough understanding of the underlying

definition of a vegetable.

For the other three objects —carrots, cabbages, and bananas— we see from fig-

ures 3.20, 3.18, and 3.19 that the Spanish and English tokens shared the same positive
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Figure 3.18: Positive and negative instances found for the cabbage tokens in Spanish

and English (stemmed). In the False Positive squares, instances that were false positives

multiple times are outlined in white, with a thicker border indicating the mistake happened

more often. Note that the Spanish “col” and “repoll” classifiers had a hard time with blue

objects.

instances. For these three objects, I instead looked at their negative instances. For all

three objects, there was some overlap in the negative examples found for each language,

so word usage between the languages had enough parallels that some instances that had

very different descriptions from the object in English had similarly different descriptions

in Spanish.

In figures 3.18,3.19, and 3.20 one can see that images that were false positives

for only one language were often identified as negative examples during training for the
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Figure 3.19: Positive and negative instances found for the banana tokens in Spanish and

English (stemmed). Note that the Spanish “platan” and “banan” classifiers also miss-

classified green objects.
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Figure 3.20: Positive and negative instances found for the carrot tokens in Spanish and

English (stemmed). Note that the “carrot” classifier was trained on many of the negative

examples that fooled the “zanahori” classifier.
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other. As an example, the Spanish cabbage classifiers were often fooled by blue objects of

a particular shade. The English classifier had far fewer problems, and this may be because

a blue cube was identified as a negative instance in training.

A few properties of the system could be causing these results. The negative in-

stances found during training are those instances from the training split that are furthest

away from positive instances. The negative instances found in testing are the instances in

the testing split that are furthest away. Since the test split chooses exactly one instance

for each object, this forces stronger diversity in the negative instances tested. For the

three objects shown, the English versions appeared to have identified the more confusing

negative instances during training, allowing the classifiers to have fewer errors in testing.

This could indicate that the underlying English descriptions were slightly more diverse

between instances for these objects.

3.5.5.2 Shape Tokens

In this section, I examine some shape-related tokens that performed differently on

their shape classifiers between Spanish and English. The previous section looked at object

classifiers, which are concerned with both shape and color. The shape classifiers ignored

color features. Note from figure 3.12 that the average shape classifier scores were very

close for Stemmed Spanish and Stemmed English tokens. The Spanish tokens actually

performed slightly better on average, though the for the specific shapes below the English

tokens performed better.

The two shapes identified were square and triangle. Figures 3.22 and 3.23 show
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Figure 3.21: Shape tokens with large (greater than 0.5) differences in F1 score between

Spanish and English.

the positive, negative, and false positive instances that were found for the Spanish and

English versions of the words. For the square tokens, the Spanish version had far fewer

negative instances to go off of in training, and some misleading positive instances, both

of which could cause confusion in the classifier. For the triangle tokens one can note that

corn instances (which are mostly roughly triangular) seemed to have been identified as

negative instances to train and test the “triangul” classifier on, while they don’t appear

to have been found for “triangle.” In addition, carrots were not identified during training

as good negative instances for “triangul,” and during testing it had problems identifying

them as negative. In general, a lot of the performance differences seem to come down

to differences in word choices across the corpora that caused more or less informative

negative examples to be chosen during training.

3.5.5.3 Color Tokens

This section examines color tokens that performed differently between Spanish and

English. These classifiers were only trained on the color features of the images.

On average, there was little difference between the color scores of the Spanish and

English stemmed tokens. For the tokens found in this section (see figure 3.24), Spanish
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Figure 3.22: Positive and negative instances found for the square tokens in Spanish and

English (stemmed).In the False Positive squares, instances that were false positives mul-

tiple times are outlined in white. For the sake of space, only one image of each instance

is shown, but the system was trained and tested on these instances from different angles.
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Figure 3.23: Positive and negative instances found for the triangle tokens in Spanish and

English (stemmed). Note that corn instances were chosen as negative examples to train

and test more often for the Spanish token.

Figure 3.24: Color tokens with large (greater than 0.5) differences in F1 score between

Spanish and English.
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performed better for yellow, and English performed better for green.

For the yellow tokens, there were fewer negative instances found for “amarill,” and

in general “amarill” appeared more often in a more diverse list of instances than “yellow”

did (“yellow” had 44 instances where it was never used in any descriptions, as compared

with “amarill” which had 19). However, the threshold was crossed for a similar list of

instances in both languages. The restricted possible negative example set would cause the

“amarill” classifier to be tested on fewer things, which could explain the higher score.

For the green tokens, there is a less dramatic but similar situation, where “green”

only had 37 possible negative instances while “verd” had 44. Both classifiers were con-

fused by yellow and blue instances.

3.5.5.4 Conclusion

In the sections above, I explored particular objects, shapes, and colors that scored

differently between Spanish and English. In general, these score differences seemed to

be caused by differences in the positive or negative examples chosen for the tokens. The

system seemed very sensitive to specific examples being added or left out. This may be

due to properties of the dataset, as there were only 72 possible objects where most of the

fruit or vegetables were identical across instances. Descriptions also tended to be similar

across instances for objects. If one instance was identified as negative for a token, likely

the others would be as well, reducing the diversity of the negative samples chosen. This

could be mitigated by increasing the diversity and size of the data set, or potentially by

modifying the method for finding negative examples to encourage diversity.
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Figure 3.25: Positive and negative instances found for the yellow tokens in Spanish and

English (stemmed).In the False Positive squares, instances that were false positives mul-

tiple times are outlined in white, with a thicker border indicating the mistake was made

more often. Note that “amarill” had fewer negative tokens than “yellow,” indicating that

there were fewer instances overall that did not see “amarill” at least once.
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Figure 3.26: Positive and negative instances found for the green tokens in Spanish and

English (stemmed). Note that yellow and blue instances were rarely chosen as negative

instances to train on, and were responsible for most false positives.
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3.6 Summary and Conclusion

In this chapter, I explored the GLS’s performance on Spanish language data. I

began with an analysis of Spanish using a translated version of the English corpora, and

identified stemming as a necessary adaptation to the system to handle Spanish’s high

amount of inflection. I then collected a new comparable corpora of Spanish language

data.

I found that the GLS performed comparably between the real data of the two lan-

guages, and that stemming impacted the real Spanish data in a similar manner to what

was predicted through the translated data. I also found that real crowd-sourced Spanish

descriptions had additional noise from inconsistent accent use, which was mostly miti-

gated by the stemmer. In addition, the impact of domain-specific and generic stop words

were explored, and it was found that removing both types could be beneficial, though the

current method for identifying domain-specific stop words may be too broad. Finally,

I compared how well the system was able to learn different objects, shapes, and colors

in the two languages across. I found that the token F1-scores were very sensitive to the

specific negative and positive examples chosen. I found that the score differences were

strongly influenced by differences in word choice across the noisy corpora, and did not

appear to be indicative of the GLS being intrinsically better suited to one language than

the other.

This Chapter contributes to the contributions of the thesis in several ways. The

decision to use a stemmer for Spanish instead of a lemmatizater provides an example of

a case where a less complex step allowed for greater applicability across languages. The

52



analysis with the translated data proved sufficient for identifying stemming as a necessary

adaptation for Spanish. A general language adaptation framework was also demonstrated

in this Chapter, as stemming was added for Spanish data and then applied back to English

data as well.
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Chapter 4: Expanding the System: Hindi

4.1 Introduction

Hindi is the native language for hundreds of millions of people [64]. It is from

a different language family than English or Spanish, has a wide variety of dialects with

small linguistic differences, and uses its own script. Just as Spanish was chosen as the

first language to apply the system to due to its similarities to English, Hindi was chosen

as a language significantly different from the ones applied to the system before. It was

also an ideal language for my situation, as there were several students in the same lab who

spoke the language that I could consult with.

To inform this work, I looked into recent Natural Language Processing research

using Hindi, mainly on the tasks of entity recognition [65] and text summarization [66–

68]. NLP work in Hindi is complicated due to the variety of dialects found within the

language, and a comparable lack of large annotated corpora [65]. In addition, tasks like

entity recognition are complicated due to the language’s free word order, lack of a concept

of capitalization, and variation in the spelling of proper nouns [65]. The GLS uses a bag-

of-words approach, so the free word order would likely not cause a problem (though

if the system were ever to be updated to take word order into account, this would be

something to watch out for). The system also ignores capitalization, so it was only the
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possible spelling differences that were identified as a potential issue. For preprocessing

steps, many of the papers used pre-made lists of stop words [66–68]. Stemming was also

popular, and was accomplished using either Hindi WordNet, or a simple largest-suffix

removal stemmer [63]. Since stemming turned out to be very necessary for Spanish, and

was used so often in general Hindi NLP work, I added it in from the beginning when

comparing the English and translated Hindi performances as shown in figure 4.2.

4.2 Google Translated Data

As with the Spanish data, I started my analysis of Hindi with a translated version

of the English corpus using the Google translate API [39]. This allowed me to test the

system with data in Hindi characters and identify places where properties of Hindi might

cause differences in system performance.

As before, once the English data had been translated I translated it back to English

and manually chcked what meaning was retained between the original English descrip-

tions and the English-to-Hindi-to-English descriptions. There were a number of common

word replacements, such as “side” becoming “shore,” “lime” becoming “color,” “child”

becoming “wild,” and “oblong” becoming “rectangular.” These could all be explained by

the Hindi translation of the first word having several possible meanings. A more inter-

esting effect of the translation was adjectives and descriptions of objects simply being

removed. For example, the phrase “this is a carrot laying on its side” became “this is a

carrot.” In addition, the back-translation often corrected misspellings in the English text,

where the Spanish translator had usually just left them untranslated. An example is the
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Figure 4.1: Back-Translation meaning retention between English and Hindi.

token “eggplanet” which was used often enough as a misspelling for “eggplant” that it

learned its own classifiers. The Spanish translator generally left this word alone, treating

it as a proper noun, while the Hindi translator attempted to derive the intended word and

produced “eggplant” upon back-translation. It appeared that when the translator could

not derive and English word, it attempted to write out the sounds for the English word

in Hindi characters. Both the spelling correction and the propensity to chop off phrases

were likely caused by differences in the underlying systems Google uses to translate Hindi

versus Spanish.

Overall, translation of the English text to Hindi and back left around a third of the

descriptions exactly the same. Out of the ones that did change, five hundred descrip-

tions were randomly selected to be examined and about three quarters of those retained

their meaning (see figure 4.1). This meant that the expected percent of the descriptions

that were correctly translated was around 84% (compared with the 90% for Spanish). I

expected that the translated Hindi translation should perform slightly worse due to trans-

lation error, but this mostly proved to be false.
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Figure 4.2: Average classifier scores for English and Google Translated Hindi stemmed

and un-stemmed. The error bars show the variation in the scores across runs.

Figure 4.2 shows that for the color classifiers, Hindi scored comparably to the En-

glish data, with small differences that could be due to mis-translation. The main dif-

ferences were in the object classifiers, where stemming appeared to decrease the Hindi

scores, and the shape classifiers where the Hindi scores started out higher. Stemming

appeared to impact the Hindi translated text in similar but less dramatic ways than the

English version.
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4.3 Real Hindi Data: Collection and Analysis

4.3.1 Additional Complications

Just like with Spanish, my next step was to collect real Hindi descriptions using

Amazon Mechanical Turk. From discussions with Hindi-speaking students, several po-

tential complications were identified. First, it was noted that the language name Hindi is

used to describe a wide variety of dialects, which could lead to differences in spelling and

word usage between workers. In addition, it was noted that many Hindi speakers in India

do not bother with a Hindi keyboard, but rather communicate online with roman charac-

ters. I decided against allowing workers to submit Hindi written with roman characters,

since the spelling of the converted text can vary from person to person. However, I was

concerned that unfamiliarity in using Hindi keyboards might encourage workers to use a

translation tool to get phrases in Hindi characters.

To test for this case, I ran a small test batch of thirty HIT’s (of five descriptions each)

with five assignments per HIT (so a minimum of five different workers would complete

each HIT). In this batch, each answer space had an additional hidden variable that noted

if the field had been pasted into to estimate how much people were writing with a built-in

Hindi keyboard, though it was noted that a person might use an online keyboard and paste

the results from that, which would be perfectly valid. The results showed around 75% of

the fields had been pasted into. There were 19 workers in total who worked on HITs. Out

of this, two of them never used copy/paste. However, 52/150 of the HITs (from 7 workers)

had at least one field that was not copy/pasted into. This means that while there was a
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decent amount of copy/paste happening, around half of the workers had at least partially

completed the HITs without another source. This was promising, since it suggested that

workers were indeed available that were familiar with Hindi keyboards.

4.3.2 Data Collection

The Hindi data was collected in one large batch using the same HIT design as

described in section 2.5, where each HIT was given 18 assignments to encourage diversity

in the answers (18 assignments means at least 18 unique workers had to complete that

HIT). 56 unique workers contributed to the dataset. Out of these two had to have their

work rejected for not following directions. Several additional workers had their work

accepted but were blocked from completing additional HITs, as their descriptions were

too general (for example putting “it is healthy” for all vegetables and fruit). Around

30% of the HITs were completed with at least one description filled out without any

copy/pasting. This is consistent with the results found in the pilot batch (see figure 4.3).

In total, I collected 6,283 descriptions, which was slightly larger than the English

corpus of 6,045. After initial analysis, two additional workers were found to have submit-

ted problematic results, and thus their submissions had to be excluded (see section 4.3.6

for a discussion of this and 4.3.6 for an example). The average number of descriptions

per object after these workers were removed was 318 (1,090 descriptions were removed

in total), which was slightly lower than the average for English which was 335 (see figure

4.4). For the Spanish data, this average had been 283, which was low enough that for the

analysis I subset the Spanish and English data so they were of comparable sizes. Though
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Figure 4.3: This figure shows the percentage of copy pastes used per HIT. Note that for

slightly over thirty percent of the HITs, at least one field was manually filled in.

the Hindi data was much closer in size to the English one, I decided to also compare

subsets, so that the scores could be compared across all three languages.

4.3.3 Overall Scores

The average token scores for Hindi versus English are shown in figure 4.6. In gen-

eral, the scores were comparable to English, though the system had slightly higher scores

for Hindi shape classifiers, and slightly lower for object and color classifiers. Interest-

ingly, the score differences between English and real Hindi were pretty similar to the

score differences with translated Hindi. Once again, stemming appeared to negatively

impact the color scores and positively impact the shape scores for both languages. The

impact of stemming is examined in closer detail in section 4.3.5.
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Figure 4.4: This shows the number of descriptions per object for English and Hindi. We

can see that in their counts were mostly fairly close, with the exception of carrot, where

the larger number of images per instance caused far more Hindi data to be collected than

English.

Figure 4.5: A sample of a description given by one of the two problematic workers. Both

workers provided exactly the same descriptions for the same objects, suggesting that they

were the same person.
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Figure 4.6: The average F1-Scores of all tokens trained in the Hindi and English data with

and without stemming. The error bars show the variance in these scores across runs. Note

that the variance was on a whole very low.

4.3.4 Stop Words

To dig into the score differences between English and Hindi, I first wanted to iden-

tify Hindi stop words the system trained classifiers for. Since nltk did not have a stop

word list for Hindi, I used the list found in [69] for the generic Hindi stop words. The

total list of stop words found through this list and those tokens in the lowest 2% by IDF

is shown in figure 4.7. I found that the system had learned classifiers for more stop words

in Hindi than the other languages. Unlike with Spanish, there were no obviously useful

tokens found in the bottom 2% of tokens by IDF. Figure 4.8 shows how removing the

generic and low-IDF stop words impacted the scores. One can see that removing stop

words barely effected the color classifier scores for Hindi, but had a noticeable positive

effect on the object and shape scores. This positive effect happened because the average
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Figure 4.7: These were the tokens learned by the grounded language system on the Hindi

data. The dashed border indicates the token was in the bottom 2% by IDF score. The

dotted border indicates the token was found in the generic list. The solid border indicates

the token appeared in both lists.

F1-score for the stop word tokens was lower than the average for the other tokens, so

removing them from consideration increased the overall token average.

4.3.5 The Impact of Stemming: Colors

In the color section of figure 4.6, stemming appeared to negatively impact the

scores. This section seeks to examine this impact more closely.

In Hindi, like in Spanish, nouns can have genders and adjectives must be conjugated

to match the gender of the noun. Color-related tokens learned by the system could appear

in four possible forms. They could be inflected to match either singular masculine, singu-

lar feminine, or plural nouns as shown in figure 4.9. They might also remain the same for

all nouns, as is the case with the “red” token. Figure 4.10 shows how often color-related

tokens appeared in various forms across the un-stemmed dataset.

As was the case with Spanish, for most colors one form was more popular to use
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Figure 4.8: The three graphs demonstrate the impact on the average F1-score of removing

generic stop words versus removing the lowest 2% tokens by IDF score for Hindi and

English. The error bars show how the variance of these scores among the tokens averaged.

Figure 4.9: This shows the three ways in which an adjective might be conjugated based

on the gender and plurality of the noun.
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Figure 4.10: This shows the counts for the various conjugations of color words in the

Hindi dataset. Note that for green, yellow, and blue, the plural conjugation was used most

often, which is very different from the Spanish dataset.

than the others. For Hindi, this was most often the plural form. The GLS learned classi-

fiers for multiple forms of blue, green, and yellow. Figures 4.11 and 4.12 show how the

scores and number of positive examples found for the stemmed versions of these colors

compared with the average scores of the un-stemmed versions. The positive examples

were higher for stemmed green and yellow than for their raw versions, indicating that

the positive examples from different inflections were combined. One can see that the

stemmed version almost always had lower precision, indicating that combining the ex-

amples from different inflections made a classifier that incorrectly labeled more things as

positive. This gives some insight into the score difference between the raw and stemmed

color classifiers. As was the case with Spanish, combining the color word examples could

increase the diversity of the examples for the stemmed color token, making it harder for
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Figure 4.11: This shows the difference between the average of the scores for different

conjugations of color words and the stemmed score. Note that the precision dropped in

most cases.

the classifier to accurately identify examples.

4.3.6 Impact of Excluded Workers

In the original examination of the Hindi data, two workers were identified as po-

tentially problematic. Both workers tended to submit long sentences that appeared to

be taken straight out of scientific articles related to the objects they were being asked to

describe (see figure 4.3.6 for an example). Initially, these descriptions were left in as ac-

ceptable noise. However, this ended up having a drastic impact on the learning system.

The Hindi system learned 294 tokens, a full 187 additional tokens to what the system

would learn without those descriptions. The reason for this seemed to be that the workers

always submitted the same long sentences for objects of the same type. Since these two
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Figure 4.12: This shows the difference between the average of the number of positive

instances for different conjugations of color words and the stemmed score. Note that the

stemmed versions tended to have more positive instances, showing that stemming did

help the classifier get more examples for colors.

workers did many HITs, this introduced a large number of tokens that were tied to specific

objects (as only those workers had used those words), causing the system to train fairly

accurate classifiers for them. This inflated the F1-score for the Hindi tokens as shown in

figure 4.13. Since the descriptions submitted were mostly related but not directly describ-

ing the objects, and the workers always submitted “I can’t tell what the image is” for any

object that was not a fruit or vegetable, it was decided that these submissions would not

be included in the final analysis. Nonetheless, this is an example of how the GLS can be

sensitive to outliers.
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Figure 4.13: The average F1-Scores where the problematic workers have not been re-

moved, with the scores after they were removed for comparison. Note that Hindi scored

much higher than English, partly due to the addition of many tokens only used by those

two workers for specific objects. Also note that for the scores shown, the system was

trained using all descriptions available, and not with subsets as is used in other sections.
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4.4 Summary and Conclusion

In this chapter, I have examined how well the system could adapt to the Hindi

language. In the beginning, I identified concerns about workers using translation tools

that did not end up being corroborated by the results. I next collected a corpora of Hindi

descriptions that was slightly smaller than the English one.

I explored the impact of stemming, an adaptation made for Spanish, on Hindi, and

found that the languages had similar properties that made the step necessary. I did not

find that Hindi required additional adaptations, and indeed found that the system per-

formed either as well as or better with Hindi data than with English. I also identified a

way in which the system can be sensitive to a few workers using unrelated and unusual

vocabulary.

As with the previous chapter, the analysis in this Chapter demonstrates the main

contributions of this thesis. While no additional adaptations proved necessary for Hindi,

it was noted that future complications to improve the system that took word context into

account could work well for English but run into problems due to Hindi having free word

order. In addition, when adapting the system to Hindi, I chose to add in stemming from

the beginning. This was not done blindly, as I did check to make sure stemming made

sense in this context and did not cause new problems. Finally, while the scores were not

necessarily the same between the real and translated data, the collection of real Hindi data

did not reveal additional features about how the system interacted with the language. As

was the case with Spanish, the translated Hindi data, while imperfect, was sufficient for

this purpose.

69



Chapter 5: Analysis

5.1 The Three Datasets

For this thesis, I collected object descriptions in both Spanish and Hindi. I did so

while imitating the procedures used to collect the English data to maximize the compara-

bility of the system’s performance between languages. While enough batches were run to

collect a comparable number of descriptions in Hindi and Spanish to the ones in English,

both results ended up smaller than English because problematic workers were identified

after the fact and their submissions had to be thrown out. Figures 5.2 and 5.1 show that

the Hindi dataset ended up much closer in size to the English dataset than the Spanish one

did. This is partially because the Spanish data was collected first, so lessons were learned

about proper vetting of worker submissions and the correct number of assignments to give

per HIT, which minimized the damage from problematic workers in the Hindi data. In

general, there were many similarities in the kinds of descriptions given for the objects de-

spite lack of priming. This is likely due to the simplicity of the objects, and the propensity

of workers to describe the objects in as few words as possible. Nevertheless, each dataset

had its own outliers from workers who gave valid but unusual answers, which contributed

noise and meant that the system did not learn exactly the same terms for each language

(see figure 5.3 for examples).

70



Figure 5.1: The left chart shows the average number of descriptions per object collected

for each language. The right graph gives the total number of descriptions collected.

Figure 5.2: The number of descriptions collected per object for the three datasets.
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Figure 5.3: This figure shows the variety in the responses for the cucumber instances.

The Spanish and Hindi responses are translated to English here. Note that it was very

common to get a generic “this is a cucumber” response in all three languages.

5.2 Aggregate Analysis

Previous chapters compared how the grounded language system performed between

pairs of languages. This section pulls this together to look at the performance across all

three languages.

5.2.1 Scores Across Languages

Figure 5.4 shows the scores across the three languages with the real language data

with and without each of their respective stemmers. One can see that, overall, the system

did not appear to have higher scores for one language than the others for all categories,

and stemming tended to impact scores in similar ways across languages.

There are two things that are important to note about these scores. Firstly, the

values are the averages across all tokens learned, whether or not those tokens belong to
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Figure 5.4: Overall scores of all three languages. Note that to allow for fair compari-

son, the Hindi, English, and Spanish datasets have been subset to have equal amounts of

descriptions per instance.

Figure 5.5: The average token scores for English, Google translated Spanish, and Google

translated Hindi, with and without stemming. Note that the translated Spanish scores

were more dramatically effected by stemming than the actual scores for the real Spanish

data.
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that category. Secondly, as has been seen in earlier sections, the value of the F1-score

for a particular token does not necessarily correspond to a well-trained classifier. One

can see from the Hindi and Spanish analyses in sections 3.5.2 and 4.3.5 that stemming

was certainly necessary for tokens specifically relating to colors, due to the high rate of

inflection, but the F1-score might decrease with stemming. Spanish had lower object

scores than English, but when comparing individual objects where the Spanish version

had a lower score (see section 3.5.5) there were times where the examples chosen for the

Spanish classifier were more representative of the underlying meaning of the word.

5.2.2 Scores with Translated Data

Figure 5.5 shows how the system performed with the entire English dataset and

with that dataset translated into Spanish and Hindi. One can see that stemming impacted

the scores for the translated Spanish data more than the real Spanish data in figure 5.4,

and impacted the color scores for the real Hindi more than the translated Hindi. One

can also see that the translated data scores were often closer to the scores of the English

data than the scores for the real Hindi and Spanish data were. This is intuitive, as the

vocabulary usage patterns in the data formed by directly translating English descriptions

would naturally be closer to the English data than new Hindi and Spanish data collected

from different people. At the same time, the score differences between the translated and

real language data were not very large.

74



Figure 5.6: The impact of the removal of generic and low-IDF stopwords on the three

languages (subset for equal dataset size).
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5.2.3 Stop Words Across Languages

One effect that extended across all three languages was that the removal of both

generic stop words and low-IDF-score tokens was helpful for the system. In this, the

F1-score was a decent indicator, since the scores for tokens that did not have meaning in

the intended task were indeed lower. Figure 5.6 shows that the effect of removing these

tokens was consistent for the object and shape classifiers.

Figures 5.8, 5.9, and 5.10 show the tokens that would have been removed if the IDF

percentile was moved. We can see that for English, removing the lowest 2% of tokens was

safe (in that no obvious colors, shapes, or objects we would want to learn were removed),

while for Hindi the lowest 3% could have been removed without trouble. As mentioned

before, Spanish had the strictest situation, where even removing the lowest 2% of tokens

as done in the analysis also removed two color tokens. This suggests that percentile is

likely not the best threshold for identifying domain-specific stop words. At the same

time, one can also see from figure 5.7 that there were a lot of similarities in the stop

words that were only found through low IDF score in all three languages. All three lists

had some token that a person might use when talking about a generic item. This fulfills

the intended purpose of finding low-IDF tokens on top of regular stop words, which is to

stop the GLS from trying to ground words that don’t refer to anything specific.

5.3 Summary and Conclusion

In this section, I have extended previous analysis done between pairs of languages to

extend across all three. An examination of the collected data showed many commonalities
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Figure 5.7: Low IDF stop words found for each language that were not also generic stop

words.

Figure 5.8: English tokens learned by the system that were in the bottom 1%, 2%, 3%,

4%, and 5% using IDF. Note that the tokens in the top 1% are all generic stop words,

while the top 2% has a mix of generic and domain-specific tokens that nonetheless do not

have an obvious physical grounding.

Figure 5.9: Spanish tokens learned by the system that were in the bottom 1%, 2%, 3%,

4%, and 5% using IDF.
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Figure 5.10: Hindi tokens learned by the system that were in the bottom 1%, 2%, 3%,

4%, and 5% using IDF.

and some differences across the three language data sets. The average token scores across

the three data sets were found to be comparable, and there was no real indication that

the system performed better on one language than the other. The GLS performed in a

similar way between the google translated data and the real collected data. In addition,

the general positive or negative effect of stemming on the scores was the same between

real and translated data. This suggests that the translated data might be sufficient for

identifying the impact of adaptations on scores for new languages, although this would

need to be explored with further adaptations and languages. Finally, similarities were

found in the types of tokens identified with low IDF scores, though the percentile where

color, shape, and object words began occurring was different between the three languages.

78



Chapter 6: Conclusion

6.1 Conclusion

In this thesis I have proposed adaptations to an unsupervised grounded language

acquisition system [9] to work with Spanish and Hindi data. I discussed my initial obser-

vations using Google translate, and explored the extent to which these observations could

be extended to real data collected through Amazon Mechanical Turk. Through my exper-

iments, I was able to identify several differences between the three languages that should

be addressed in the system to attain comparable results. At the same time, I did not find

that either Hindi or Spanish did significantly worse than English even before applying

additional steps. In general, the existing system with slight modifications seems to work

fairly well for all three languages, which is promising when considering its applicability

to real-life situations.

6.2 Contributions

The work done in this thesis could be useful to future work in a number of ways.

While this work looks at a specific system and dataset, a number of lessons can be taken

that could apply more broadly. In this section, I identify three main novel contributions
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of this work:

Contributions:

• Identified a trade-off between complexity and ease of applicability to additional

languages.

• Proposed a framework for adapting an existing system to handle data from a new

language.

• Demonstrated the utility of using translated data to estimate system performance on

a new language.

First, I have established that, when creating a new multilingual grounded language

or even natural language system, making the system more complicated introduces dis-

crepancies in how the bare system performs across languages. One reason why the GLS

in this thesis may have been able to transfer so well across languages was because it is

a fairly simple system. The bag-of-words approach sidesteps several complications that

could have been introduced by the free word ordering of Hindi if the system had taken

word context into account. The simplicity of this system also meant that for the languages

explored, stemming was the most complicated preprocessing step that had to be added.

Through explorations of lemmatizers and NLP work in Hindi and Spanish, I demonstrate

that the more complicated a preprocessing step added for performance is, the more diffi-

cult it is to have that step readily available for low-resource languages.

Second, I propose and demonstrate the utility of a method to adapt a system across

languages. The main goal of my research was to find out what adaptations needed to be

added for the system to work with non-English languages, and those adaptations were
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then also added for the other languages. When stemming proved necessary to add for

Spanish, it was also added for English and Hindi with the idea that so long as adding the

step did not explicitly hurt the other languages’ performance, it should be added for all

languages. Utilizing this framework will allow systems to take on modifications necessary

for linguistic differences while maintaining maximal consistency in their handling of data

across languages.

Third, I demonstrate that translated data can be used to identify high level dif-

ferences between languages that effect performance, and model the effects of proposed

adaptations. This supports the idea that translated data could be used in place of collecting

real language data by someone looking to explore how their system works across many

languages quickly, though this claim would need to be explored further.

6.3 Future Work

This thesis sought to examine the performance of an existing system in the context

of a particular data domain. There are many possible ways in which the different aspects

of the system or data could be expanded on in the future.

Firstly, the data used for my experiments had a very limited scope, and the images

being described were very simple with only one object in each image. A good next step

would be to expand the image dataset to include more items and more complex images.

The descriptions collected had a lot of redundancy, partially because the same worker

might see different angles of the same object many times. For future data collection, it

might be beneficial to add the constraint that an individual worker not see the same object
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more than once or twice.

Secondly, though my work did discuss several preprocessing steps common to NLP

(lemmatization, stemming, and stop word removal), there are many more that were left

out since they were left out in the original system. In particular, spelling correction could

be very helpful in mitigating some of the noise introduced by different workers. Other

techniques like entity recognition or part-of-speech tagging could also help to identify

meaningful concepts within the descriptions. At the same time, I believe it would be most

beneficial to examine these techniques while still keeping multilingual data in mind, as

there are likely to be varying levels of resources depending on the language.

Finally, the classifiers were trained using logistic regression, and the tokens were

identified without respect to the context they were used in. It would be a simple next step

to experiment with different classification algorithms, to see if logistic regression is really

the best fit. In addition, it would be interesting to explore more sophisticated ways of tying

the language to images. One way would be to use word embeddings to train features of

images on features of words, rather than directly mapping image features to words. This

could help to utilize commonalities between different tokens. One could also make use

of the similar data collected in different languages to tie tokens and phrases together

using the images as pivots, as was done in [33]. It would be interesting to examine the

possibility of learning groundings of concepts where the tokens span across languages.

The possible future work listed above represents a small fraction of the ways the

research presented in this thesis could be expanded. Multilingual Grounded Language

Acquisition is a maturing field with many fascinating challenges left unsolved. As we

move forward into the future, work in this area will be essential for making future robotic
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assistants accessible and adaptable, allowing them to be enjoyed by a diverse population.
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Appendix A: Other Modifications: Generalizing the System to Choose

Positive and Negative Examples

A.1 Introduction

The system to select positive and negative examples of tokens described in section

2.2.4 is a generalization of the approach used in [9] and [11]. This section describes the

modifications that I made to the original system described in those papers. These modifi-

cations were made after it was noted that the procedure to identify positive and negative

instances was different between training and evaluation in the original code base. Positive

and negative instances are found twice in the code, first to choose which examples to train

each token classifier on, and then to choose which examples to evaluate those classifiers

on. In the original training code, instances were positive examples of a token if that token

appeared once in descriptions, while a cutoff of 10 was enforced for evaluation. Negative

instances were found using a threshold on the cosine similarity value for training, but the

evaluation code merely took the last 2/3rds of negative instance candidates by distance. In

addition, the training code enforced that a negative instance must be above the threshold

of distance from all positive instances of that token, and that the token must never have

appeared in any description of that instance, neither of which were enforced in evaluation.
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I decided to merge these methodologies together and edit the code so both training and

evaluation used the same system.

A.2 Finding Positive Instances

In the end, the method for identifying positive instances was kept fairly close to

what was already in the code. The only difference was that a cutoff of 5 was implemented

for both training and evaluation. This meant that an instance was a positive example of a

token if the token had appeared at least five times in descriptions for that instance. The

value of 5 was found experimentally, by seeing what positive instances were found for

different tokens at various cutoffs.

A.3 Finding Negative Instances

The final method that was decided upon for finding negative instances used ele-

ments from both original methods. It was decided that enforcing that a negative instance

had never seen the token in any of its descriptions would be a good way to narrow down

candidates. In addition, I combined the concepts of choosing some portion of negative

instance candidates by distance (instead of using a threshold) with choosing the negative

instances that were the furthest away from all positive instances for a token. This was

done by first having each positive instance identify the top 2/3rds most different negative

instance candidates from itself. The final scores for each negative instance came from the

sum of the distances between the candidate and all positive instances where the candidate

was in the list for that instance. The negative instance candidates were then sorted by
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this score, and the top 25% of the candidates were chosen as negative examples. This

25% value was chosen experimentally by examining the F1-scores at different cutoffs in

both training and evaluation using the English data (see figure A.1). It must be noted that

during these experiments, a token only had to appear once in descriptions of an instance

for that instance to be a positive example of the token. This caused the scores to be much

lower than those reported for English in other parts of the thesis.

Figure A.1: The F1-scores when token classifiers were trained on different cutoffs of neg-

ative examples. The score for 25%,50% means that the top 25% of instances were chosen

as negative examples for training, while the top 50% were chosen during evaluation.
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