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ABSTRACT

Title of dissertation: SHARING LEARNED MODELS
BETWEEN HETEROGENEOUS
ROBOTS: AN IMAGE DRIVEN
INTERPRETATION

Isha Rahul Potnis, Master of Science, 2018

Dissertation directed by: Dr. Cynthia Matuszek
Assistant Professor
Computer Science and Electrical Engineering

With the evolution of robotics to produce more a↵ordable and proficient

robots, it has become crucial for robots to get acquainted with their environment

and tasks quickly. This requires training classifiers to identify objects denoted by

natural language, a type of grounded language acquisition and visual perception.

The current approaches require extensive training data gathered from humans for

robots to learn the contextual models. For robots to work collaboratively, every

robot must understand the task requirement and its corresponding environment.

Teaching every robot these tasks separately would multiply human interaction with

robots. Research in ‘transfer learning’ is gaining momentum to avoid the repetitive

training task and minimize human-robot interaction.

With the advancement of personal assistance in elderly care and teaching do-

mains, where the learned robot models are environment-specific, transferring the

learned model to other robots with minimum loss of accuracy is crucial. Homoge-



neous transferred learning is easy as compared to transfer learning in heterogeneous

robot environment with di↵erent perceptual sensors.

We propose the ‘chained learning approach’ to transfer data between robots

with di↵erent perceptual capabilities. These di↵erences in sensory processing and

representations may lead to a gradual drop in transfer learning accuracy. We conduct

experiments for co-located robots with similar sensory ability, with qualitatively

di↵erent camera sensors, and for non-co-located robots to test our learning approach.

A comparative study of cutting-edge feature extraction algorithms help us build an

e�cient pipeline for optimal knowledge transfer.

Our preliminary experiments lay a foundation for e�cient transfer learning

in a heterogeneous robot environment while introducing domain adaptation as a

potential research option for grounded language transfer.
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Preface

This dissertation on “Sharing learned models between heterogeneous robots:

an image-driven interpretation” tries to answer two main questions: whether we

can transfer learned models between heterogeneous robots with minimum loss of

accuracy and can this transfer be independent of shared workspace. This disserta-

tion is written to fulfill the graduation requirements of the M.S. Computer Science

program at the University of Maryland, Baltimore County in the period between

January and June 2018.

The research was carried out under the purview of the Interactive Robotics

and Language (IRAL) Lab at UMBC. I was a Research Assistant associated with

IRAL from January, 2018 to May, 2018. This topic was chosen to accommodate my

areas of interest, which are Robotics, Image Processing and Machine Learning.
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Chapter 1

Introduction

Advancement in technology in the last few years has led to a growth in the

availability of robots. Rather than being large, dedicated pieces of equipment oper-

ated only by trained technicians, today’s robots are smaller, more a↵ordable, and

heterogeneous. This development enables the deployment of useful robots in tradi-

tionally human-centric environments such as schools, nursing homes, and assisted

living facilities. However, to increment the usability of robots in such environments,

the robots must be intuitive, and communicating with them should be natural and

user-friendly. One approach that is gaining traction uses natural language for in-

teractions with robots, thereby enabling layman users to teach robots about their

particular way of expressing instructions to convey information about their needs

and desired environment.

Grounded Language Acquisition is a growing research area in robotics

and NLP. It involves learning models which map linguistic constructs to perceivable

world. The core problem of language dependent robots is mapping the semantics of

words and sentences with perceptual world in a noisy environment [49]. Learning

about the user specific requirements enable robots to know their user better. It lets

the robot learn how a particular user chooses to refer to its surroundings. Such

personalized learning is appropriate for assisted technology settings such as elder

1



care. In such settings, each person has di↵erent needs and way to address them

vary. Grounded language acquisition plays an important role in such user-oriented

domains.

1.1 Motivation

There is a rapid growth in the need for technological assistance in elder care

domain. The proportion of the population that is over 65 is rising, a trend that is

expected to continue in the coming years. While it is preferable for seniors to main-

tain the ability to live independently, most people will eventually need assistance

with both physical tasks and with managing cognitive decline. Our research has

application in assisted living in elder care domain. Assisted robotics may allow an

aging population to live independently for longer, with less stress on families and

the social network.

In elderly care environment, where users have varying needs, multiple small

robots with varying skills are more useful than a single robot with a fixed set of

capabilities. Such robots might also be shared, for example, in assisted living facili-

ties where some task is being done collaboratively by more than one robot. Shared

robots will have a greater need for informed user customization. To accomplish this

while placing the smallest possible burden on the user, heterogeneous robots in this

environment should be able to share learned knowledge about language and actions

and should be able to distribute tasks.
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1.2 Research Objective:

Our primary objective is to develop an approach that lets the heterogeneous

robots share the learned models. A collaborative task completion requires multiple

heterogeneous robots to work together with common basic understanding of the

environment. To make the training task easier for users in a user-customized envi-

ronment, the robots must know how to transfer the models to other robots. Loss of

accuracy when the knowledge models are being transferred is an important factor in

health care domain. Our research calculates accuracy loss while sharing the learned

models between the robots.

1.3 Key Insights

Current work on grounded language acquisition depends on certain assump-

tions that limit collaborative learning and performance. Transfer learning between

robots with di↵erent perceptions is important as the learned models are specific to

a robot’s perceptual and physical capabilities. For sharing learned models between

robots with di↵erent dimensional perceptions of the environment, we need a proper

understanding of the perceptual powers of other robot. Thus, the goal of the pro-

posed research is to develop a learning mechanism that lets robots build and share

personalized models of a person’s language, actions, and goals. This will ultimately

let heterogeneous robots in an elder care setting to respond to instructions and an-

ticipate needs that are idiosyncratic to individual users, while collaborating on tasks

that require a mix of capabilities.
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1.4 Thesis Statement

To develop an approach using transfer learning to support collaboration in

customized human-robot and robot-robot groups which mainly aim at transferring

learned models of idiosyncratic human interaction among robots with di↵erent sen-

sor abilities; and calculating the accuracy loss during knowledge transfer from one

robot to another.

1.5 Thesis Organization

Rest of the thesis is organized as follows:

Chapter 2 gives an overview of transfer learning and describes the previous

work conducted in the shared knowledge transfer domain. It also highlights the

shortcomings of these approaches to solve our research problem e�ciently.

Chapter 3 explains our approach to solve the research question. It describes

our proof of concept and the supporting concepts for the designing the architecture

proposed in the thesis.

Chapter 4 describes the experimental setup for the architecture. It gives a

detailed analysis of the dataset used and the evaluation of the architecture exper-

iment. A comparative study with the existing methods is included to provide an

insight into the accuracy of the system.

Chapter 5 concludes the results in the experimental evaluation section. It

states the future scope of the research question and also discusses the approaches

that could have been undertaken to reduce the loss of accuracy even further.
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Chapter 2

Related Work and Background

The need for untrained users to interact with the robots has resulted in an

aroused interest in the study of robots that support natural language learning [48].

Many researchers are exploring the language grounding problem, where the goal is

to extract the natural language representations in the physical world.

2.1 Grounded Language Acquisition

Grounded language acquisition involves perceiving words that refer to object

attributes present in physical environment. It establishes the meaning of such words

by mapping them to a perceptual system. This mapping is further used to identify

the physical entities with reference to the contextual representation. Research in lan-

guage grounding problem has led to success in many domains like robots learning to

follow human direction [76], understanding natural language commands to perform

tasks [72], understanding and generating spatial references and descriptions [26],

and incorporating multi modal context beyond language [5].

Many approaches are put forth to study the grounded language problem.

Boteanu et al. [12] provided a framework to identify the assumptions in complex

environment situations to complete the task using manually defined words. Aru-

mugam et al. [2] defined a granular structure to provide multiple level of abstraction
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for interpreting natural language commands. Williams and Scheutz [81] demon-

strated an approach for domain-independent grounded language acquisition when

the knowledge is obtained from multiple sources. Misra et al. [56] proposed a method

to train the classifiers using reinforcement learning by directly mapping raw visual

images with textual input to get the output. For this work, we assume that similar

grounded language acquisition approaches provide the labels for the first stage of

the learning pipeline.

Ororbia et al. [59] demonstrated that natural language is closely associated

with the physical context of the object. They proved that language models trained

with visual context outperforms other language models. Mavridis and Roy [51]

developed a modular architecture with GSM that provides a smooth integration

of language and the sensor-driven information about a particular situation. The

modules combine results of language, perception, and action-related modules for

grounding words in visual scenes. We use a similar approach of combining language-

provided labels with visual concepts, but focus more on transferring those models.

Steels [71] proposed an operational model for robots to develop a shared

grounded communication system. This led to an advancement in the domain of

animatronics as well as human-robot, and robot-robot interaction.

in Kollar et al. [37], they first construct visual classifiers that can identify ap-

propriate object properties. Then, they map the meaning of individual words to the

built classifiers, then construct a model of compositional semantics to analyze the

sentence as a whole. Previous work on grounded language acquisition in computer vi-

sion emphasizes on finding the meaning of a hidden word, rather than compositional

6



semantic analysis. Matuszek et al. [49] demonstrated an unconventional approach

for jointly learning visual classifiers and semantic parsers, to produce rich, composi-

tional models that span directly from sensors to meaning. They build probabilistic

learning models from the input. The approach is built on the the existing work of

probabilistic Combinatorial categorical grammar for semantic parsing [87, 39] and

visual attribute classification using depth kernel descriptors [9]. Similar work was

put forth in NSF NRI project “Jointly Learning Language and A↵ordances” using

physical accordances associated with humans to learn joint models of the environ-

mental and perceivable grounded language. By comparison, we use a similar paired

data set, but the work in this thesis is assumed to occur after word meanings have

been discovered.

Current models face the lack of negative examples in the training set. Pillai

and Matuszek [62] discussed the solution to overcome this shortcoming by using

semantic similarity or cosine similarity to automatically choose negative exemplars.

In our preliminary experiments, we have used manual annotation for grounding the

natural language. With related study conducted in this domain, we aim to build

user-centric models over a generalized language model.

2.2 Visual classification

Visual classification identifies objects in physical environment based on the

attributes taken from the visual context. Csurka et al. [17] stated the steps for

visual object-based classification as:

7



1. Feature Extraction

2. Clustering the extracted features to form a dictionary

3. Compare the test image features with the created categorical dictionary.

Felzenszwalb et al. [22] gave an overview of the di↵erent methods that can be

used for object detection and provided an algorithm that trains on partial input la-

bels. These object recognition systems are typically based on local image descriptors

using SIFT over 2D images [46], and spin images over 3D point cloud [31]. Bo et al.

[9] developed kernel descriptors that are able to build models with size, shape and

depth edges in a single framework. These descriptors experimentally outperformed

traditional 3D spin images. Recent work in kernel descriptors leverage the kernel

properties. Karmakar et al. [34] proposed an approach to increase the e�ciency of

the existing kernel descriptors by improving the similarity between the compared

patches with respect to any pixel attribute. We used this work to learn about the

visual classification pipeline and find the latest development in the classification.

With this related work, our next steps would be to adopt the kernel descriptors for

visual classification.

Yang et al. [85] proposed a dynamic match kernel on the top of the match

kernel [8] which calculated the matching thresholds adaptively based on the pairwise

distance among deep CNN features [43] between query and candidate images. In the

preliminary experiments, we used linear SVMs as we were using a limited dataset.

With a detailed study of the advancement done in field of visual classification, we

aim to use one of these more advanced visual classification algorithm in future along
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with large dataset.

2.3 Feature Extraction

An important attribute of image classification is selection and extraction of

meaningful features from images. Feature extraction derives informative and non-

redundant features from the initial dataset provided. But, while considering an

algorithm using large data distribution with redundant data, it can be reduced to

subset of important features called feature vector and the process is called feature se-

lection. Hira and Gillies [27] provide a comparative survey on the di↵erent methods

of feature selection and feature extraction algorithms. Lowe [46] provided the steps

for feature extraction where Scale-space peak selection e�ciently searches for all

scales and image locations using Di↵erence of Gaussian (DoG) function to identify

scale and orientation invariant potential interest points. After it finds the candidate

location based on point stability, a detailed model is fit to determine location, scale,

and contrast. Then we assign one or more orientations to each key point location on

the basis of image properties. The last step measures local image gradient at region

around each key point and transforms into a representation that allows local shape

distortion and change in illumination. Harris corners are used to detect interest

points.

Below is a summary of the feature extraction steps [46]:

1. Scale-space peak selection

2. Key point localization

9



3. Orientation assignment

4. Key point descriptor

In our research, we have made our choice of algorithms to be used for feature

extraction based on the referenced papers. This comparative study was important

to determine if we are making a right choice for the dataset that we considered for

the experiment.

2.3.1 Bag of Visual Words

Using a bag of visual words proceeds in three steps. Firstly, extract the feature

descriptors from an image dataset of each category to form a visual vocabulary or

bag of features. Secondly, group the descriptors iteratively into k mutually exclusive

clusters. The resultant clusters are compact and distinguished by similar features

where each cluster center represents feature or visual word. The third step involves

vector quantization (see 2.1).

Summarizing the steps for bag of visual words,

1. Feature extraction

2. Codebook construction

3. Vector quantization

O’Hara and Draper [58] conducted a detailed survey on the literature of the

bag of visual features. It also provided some insights into the open issues to be

tackled in the domain of feature extraction. Nowak et al. [57] provided a detailed

10



Figure 2.1: Example of bag of visual words feature extraction in image

classification. In the first stage, key points are extracted from the image;

the descriptors are then clustered using clustering algorithms to find

the similar features in the images; we then calculate a vocabulary of

visual words. Distance of features extracted from new test images are

calculated from the visual vocabulary and then classified.

survey regarding the sampling strategies and the overall e↵ect of these strategies

on the performance of the system. Jurie and Triggs [33] provided an experimental

survey for creating e�cient codebooks. We found these surveys very useful as it

contained a consolidation of work done regarding the topic ‘bag-of-visual-words.’

Csurka et al. [18] introduced the novel method of bag of visual words based on vector

quantization [36] of a�ne invariant descriptors of image patches. This method has

demonstrated robustness to background clutter in the exeriments described in the
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paper. However, we did not use this method because our dataset consisted of focused

images where there was no background clutter.

Recent advancement in the image classification [29] suggests using Local tetra

patterns (LTrP) followed by bag of visual words (BoW) pattern for e�cient learning

of visual words [55]. Sarwar et al. [66] proposes creation of small visual vocabularies

of the local intensity order pattern (LIOP) feature and local binary pattern variance

(LBPV) feature to integrate to form a large vocabulary. As the primary aim of our

research is establishing communication between the robots, we used the simplest

bag of visual words approach to classify images. In future, we would like to see how

these recent advancements help improve the image classification.

2.4 Feature Extraction Algorithms

Trivedi et al. [74] performed a comparative survey of various feature extrac-

tion algorithms, like deep learning approaches, histogram based algorithms [15, 67],

color/edge based algorithms [16], textual based features [47], SIFT [46], and SURF

[4] algorithms. For our research, we used the survey to compare and choose a feature

extraction algorithm appropriate for the dataset considered for the experiment; in

our case, we used SIFT for our experiments. SIFT performed better than SURF

when we considered various features like blurring, viewpoint, rotation invariance,

noise addition. The reason of improved SIFT performance over SURF may be be-

cause of more features extracted in SURF than reduced the speed of the process.
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2.4.1 Scale Invariant Feature Transform(SIFT)

Lowe [46] proposed a novel method for extracting distinctive features from

images which are invariant to image scale, rotation, robust matching to a�ne distor-

tion to substantial range [3], addition of noise, change in 3D viewpoint, and change

in illumination. SIFT provides key point matching needed to find nearest neighbor.

Mikolajczyk and Schmid [54] compared the performance of many local descriptors

which used recall and precision as the evaluation criterion. SIFT algorithm con-

sists of four phases stated as Scale-space extrema detection, key point localization,

orientation assignment and key point descriptor.

2.4.2 PCA-SIFT detector

Juan and Gwun [32] described PCA as a standard technique that enables us

to linearly-project high-dimensional samples into a low-dimensional feature space.

After applying PCA, we can apply two approaches for the final description of the

SIFT key points: majority rule approach and key point histograms approach. Ke

and Sukthankar [35] provided a comparative analysis of SIFT and PCA SIFT. PCA

is well-suited to represent key-point patches and is more space e�cient but observed

to be sensitive to the registration error and non-rigid deformations. We elected

not to use PCA-SIFT because our dataset contained many objects with non-rigid

deformations like garlic, tomato.
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2.4.3 Speeded-Up Robust Features (SURF)

Bay et al. [4] showed that we create a stack of features without 2:1 downsam-

pling. This creates images of same resolution. SURF and SIFT show similarity in

the performances while PCA-SIFT outperforms for rotation, blur and illumination

changes [32]. However, SURF’s sensitivity to rotation is inappropriate when a robot

may view an object from any angle.

2.5 Hierarchical Matching pursuit

Bo et al. [10] proposed an architecture that constructs a layer-wise feature

hierarchy using an e�cient matching pursuit encoder. HMP enables linear SVM

to match the performance of nonlinear SVM while providing scalability for large

data set. Aharon et al. [1] developed a dictionary learning algorithm with K-SVD

that uses k-means and updates dictionary sequentially. Matching Pursuit Encoder

used in HMP has three modules namely Batch Tree Orthogonal Matching Pursuit,

Spatial Pyramid Max Pooling and Contrast Normalization (see 2.2).

Lan et al. [41] proposed multi-channel feature dictionaries based feature learn-

ing method using two layers. The features are obtained by performing max pooling

on the sparse codes of pixels in a cell. These features are concatenated to form patch

features. These features learn the sparse code dictionary in second layer. Last step

is to apply spatial pyramid pooling to generate the object features. This method is

experimentally proved to be more e�cient than other state-of-art methods. We use

these HMP features for shape classification.
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Figure 2.2: Architecture of Hierarchical Matching Pursuit.The sparse

codes from small image patches are aggregated to patch-level features in

the first level. While in second layer, sparse codes are aggregated to pro-

duce the image-level features. Matching pursuit computes sparse codes

in each layer. Pyramid max pooling creates a pool of important features

while Contrast normalization normalizes the image-patch illumination.

HMP outperforms both SIFT based single layer sparse coding and other hi-

erarchical feature learning approaches [10]: convolutional deep belief networks [43],

convolutional neural networks [38] and deconvolutional networks [83]. The algorithm

creates histograms of the image dataset and works well with linear SVM [15, 10].

We are using RGB-D Dataset Collection [40] for our experiment, and Lai et al. [40]

states that HMP algorithm for 3D feature extraction works best for the provided

dataset.
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2.6 Heterogeneous Transfer Learning

Transfer learning involves using the knowledge obtained from one domain to

get results in some other domain [90] (see figure 2.3). For example, image classifiers

are trained on the motorcycle classifiers. The knowledge learned by the models is

then applied to classify cars. This domain has a vast applications in domains where

the source domain is labeled but we lack su�cient labels in target domain.

Figure 2.3: Transfer learning: Knowledge learned from one domain is ap-

plied to obtain the results in other related domain. An example: knowl-

edge from motorcycle classifiers is used to learn about the car object.

Types of approaches.

Pan et al. [60] provides a survey for di↵erent transfer learning techniques with

relation to the classification, regression, and clustering problems. They introduce

the following transfer learning approaches as:

• Instance-transfer: Re-weight some labeled data in the source domain for use

in the target domain [30, 44, 28, 6].

16



• Feature-representation-transfer: Find a feature representation that minimizes

the gap between the source and the target domains and the error of classifica-

tion [19, 7, 20].

• Parameter-transfer: Discover the common features between the source domain

and target domain models, which can be beneficial for transfer learning [42,

11, 68, 24].

• Relational-knowledge-transfer: Build mapping of relational knowledge between

the source domain and the target domains where assuptions are relaxed in the

domains [53, 52, 21].

Recent approaches in the field of heterogeneous transfer learning has led to

various learning approaches like asymmetric heterogeneous transfer learning [23],

proactive / complete heterogeneous transfer learning [82]. Our research question

focuses on transfer learning in heterogeneous domains. Related work in this domain

give us an overview of the approach to be followed for transferring learned models.

Our work is most similar to asymmetric heterogeneous transfer learning where we

have plenty of labels in source domain but our model uses an unlabeled dataset for

the target domain.

2.7 Domain Adaptation

Domain Adaptation is adapting the knowledge from more than one sources

and using it to improve the performance of related task in target domain (see 2.4).
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In our scenario, we consider the tasks in both the domains to be related but target

domain to be unlabeled.

Figure 2.4: Domain adaptation: Transductive transfer learning considers

flow of data from labeled source domain where the target domain is un-

labeled, while domain adaptation considers the scenario where domains

are di↵erent but the task to be completed is the same (here, classifica-

tion).

Our approach adapts learned models to solve the new semi-related tasks using

knowledge gained from the initial learned models. In hybrid heterogeneous transfer

learning [89], the scenario where the feature space and task concerned with both

source and target domain are not related to each other are considered. Recent

advancement in heterogeneous domain adaptation suggests some approaches that

use manifold alignment [25, 77], correlation subspace [86]. Tuia et al. [75] compared

the di↵erent approaches and gave an overview of advancement in the field of domain
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adaptation. A summary of the domain adaptation approaches is:

1. Adaptation of the data distributions, where classifiers are left unmodified

while the source and target domain data distributions are made as similar as

possible. These approaches extract a common feature space where all domain

data distributions may be treated equally.

2. Adaptation of the classifier, where a learned classifier model from source

domain is adapted to target domain by considering unlabeled samples of the

target domain.

3. Adaptation of the classifier by active learning, where providing limited

amount of smartly chosen label samples from target domain helps to perform

adaptation.

Our research considers the scenario where we transfer the learned models from

a labeled source domain to an unlabeled target domain, making it most similar to

adaptation of the classifiers method of domain adaptation. Such a test case is

considered under the study of domain adaptation. Related work introduces us to

the types of domain adaptation methods and helps us to select an approach that

best matches our scenario.
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Chapter 3

Learning Approach

Homogeneous transfer learning is easier as compared to heterogeneous trans-

fer learning where the source and target data distributions are completely di↵er-

ent [79]. Supervised learning is a straightforward task. Caruana and Niculescu-

Mizil [14] provides a comparative survey of various supervised learning approaches,

like SVMs [78], neural nets [69], logistic regression, naive Bayes [64], memory-based

learning [50], random forests, decision trees [63]. But for our experiment, we con-

sider unsupervised environment where the target data distribution is completely

unlabeled.

The accuracy of the classifiers built by the robot-trained robot is assumed to

be much lower than that could have been achieved if a human would have trained

it; alternatively, the target domain data distribution would have been provided with

partial labels, the reason being we can not train the models with 100% accuracy

over complex data models. In an elderly care scenario, where we train our robots on

inputs like “Advil is medicine for fever and common cold” and show the particular

bottle, the visual classifiers for human-trained robots are supposed to identify the

right bottle of Advil when they see it. We, then, transfer the learned models to the

robot-trained robot with no prior knowledge about the medicine.

Due to the di↵erence of perceptual sensors, we can not directly transfer the
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classifiers to the robot-trained robot. These classifiers have to be modified to adjust

to the changed specifications. The robot-trained robot uses the labels from human

trained robots as its ground truth. The loss of accuracy due to the transfer of models

from one robot to another can a↵ect the environment which are data sensitive like

elder care.

At times, training all the robots present on the field is not a feasible option,

especially for elder care domain. Each robot, deployed in the elder care facility, has

to cater to the needs of individual patients. To avoid this tedious and repetitive

task, sharing the models learned by one robot with other is the possible option.

Though the robots have the same task at hand, the data distribution present at the

source end and target end cannot be assumed to be the same.

Similarly, we can not assume that the robots are always co-located. Sharing

of learned models should be possible when the robots are not physically co-located.

Sharing these data models among robots with di↵erent sensors is di�cult as the

models cannot be transferred directly from one robot to another. They have to be

modified to be used by the robot-trained robots. Bozcuoglu et al. [13] conducted a

study in this domain with the assumption that systems use shared pre-knowledge

about the existing concepts in their environment.

The motivation for the research question is taken from various research do-

mains [48] like transfer learning, domain adaptation, feature adaptation [45], the

evolution of language to include syntax and semantics [70] and sensor di↵erence

modeling.

To tackle this challenging problem of sharing learned visual classifiers from
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one robot to multiple heterogeneous robots, we came up with the chained learning

approach. Chained learning is when a human trains a robot on a specific set of

classifiers and we use the shared physical presence of the other robots to transfer

the visual classifiers. The trained robot provides ground truth to the new robots

and the test set of the human-trained robot are used as a training set for the robot-

trained robots. Later, this chain continues to impart its learned visual classifiers to

other new robots. With each training session, there would be a loss in the accuracy.

In the next section, we evaluate this methodology experimentally. Our exper-

iments are built on previous work on joint model learning based on visual classifiers

and language [49, 62]. To evaluate our theory of chained knowledge transfer, we

perform a proof of concept on simple classifiers like the color classifiers.
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Chapter 4

Experimental Evaluation

Research in the domain of transfer learning in heterogeneous robots is highly

beneficial for some extremely environment-specific domains like elderly care. Such

areas require collaborative task execution where we deploy multiple robots for car-

rying out the subtasks. These tasks involve taking care of the patients, providing

them with their medicines timely, catering to their needs. It is essential that the

robots are personalized with respect to individual user needs to have a proper un-

derstanding of the patients’ requirements. In such a case, training all the robots

separately would be an arduous task for the patients as well as the faculty.

Our research question is transfer learning using the chained learning approach

with minimum loss of accuracy; eventually moving away from the shared workspace.

The experimentation involves three crucial phases: data collection, data processing,

and data analysis. We perform three experiments to validate the chained learning

approach. First, we check the validity of our chained learning approach with a

proof of concept experiment which involves co-located robots having similar sensors;

second, we conduct our experiment for co-located robots with qualitatively di↵erent

sensors; third, we move away from the shared workspace where we consider non

co-located robots with di↵erent source and target data distribution.
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Figure 4.1: Example of chained learning approach

In the chained learning approach, a human teacher provides ground truth or

labels to the human-trained robot about its physical surroundings. Human-trained

robot builds its classifiers based on the examples taught by the human teacher. For

example, human teacher teaches the human-trained robot the classifiers for ‘apple’

object. Second step of the approach is when the robot teacher provides ground

truth or labels to the other robot-trained robots to build their classifiers from the

knowledge it has gained from its own experience. Thus the robots can share their

learned models to other robots (see 4.1). We consider this entire experiment in three

scenarios:
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4.0.1 Sharing learned models with co-located, similar sensor robots

In this experiment, the first robot learns the color classifiers and then transfers

them further to the other robots according to the data that they perceive in the

environment around them. The second robot trains its classifiers from the ground

truth obtained by the first robot. Thus the second robot is gradually trained with

the fully functioning linguistically meaningful perceptual learned models from the

first robot (see 4.2).

Figure 4.2: Experiment 1 setup: Sharing learned models with co-located,

similar sensor robots
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4.0.2 Sharing learned models with co-located, with qualitatively dif-

ferent sensor robots

We consider human-trained robot training its classifiers on 2D images while the

robot-trained robot perceiving 3D images. Human-trained robots provide ground

truth or labels to the target data set of the robot-trained robots (see 4.3). Here,

the first, human-trained robot is equipped with only a camera, while the second

robot-trained robot has an RGB-D sensor.

Figure 4.3: Experiment 2 setup: Sharing learned models with co-located,

qualitatively di↵erent sensor robots

4.0.3 Sharing learned models with non-co-located robots

In this experiment, we consider the scenario where the teacher and the robot

being trained are in di↵erent locations. Transfer of learned models takes place with
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one teacher robot directly providing the robot-trained robot with learned models.

Robot-trained robot has an unlabeled data set. So the robot-trained robot directly

uses the classifiers provided which brings the research closer to domain adaptation

(see 4.4).

Figure 4.4: Experiment 3 setup: Sharing learned models with non-co-
located robots

4.1 Datasets

For the entire experiment, we have used the open source public image reposi-

tory for RGB-D images from the University of Washington RGB-D dataset [40]. The

objective of using such established dataset is to enable rapid progress in building

basic classifiers. Another advantage is to avoid the noise due to manual errors intro-

duced while creating a real dataset. The dataset originally consists of 300 instances

organized into 51 categories. RGB-D images include color and depth information

that substantially improve quality of results.
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4.2 Experiment 1: Sharing learned models in co-located similar-

sensor Robots

The human-trained robot has no knowledge about the perceptual ability of

the robot trained robot. Chained learning is the most straightforward approach

for transfer learning in such condition. Applying this learning approach for result-

sensitive domain like elder care, we have to calculate accuracy drop over the period.

Our experiment checks the loss of accuracy of the transferred models as well as the

scalability of the approach.

To test the correctness of our theory with sharing grounded language acquisi-

tion models with heterogeneous robots, we first trained language-denoted classifiers

using images from an existing dataset [40].

4.2.1 Dataset for Experiment 1: Simple RGB Images

Our first experiment involves sharing learned models in robots with di↵erent

camera sensors. We consider our human-trained robot to be perceiving the objects

as perfect RGB images. For the robot-trained robot, we consider its camera be of

low quality. As the research focuses on transfer learning, we assume correct labels

assigned by a human teacher; in practice, these labels vary in quality [88, 80], which

would reduce downstream accuracy of the pipeline.

Our dataset had a total of 8 categories. To create a dataset for our preliminary

experiment, we included 15 images of each category that we are considering for color

classification. From amongst these 15 images, we have 8 images of one instance and
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7 images of the same object of another instance. The two instances have slight

variation in appearance and texture. These 15 images form a positive sample data

set for the particular color classifier(see 4.5).

Figure 4.5: Experiment 1: Data set for Co-located Similar-Sensor Robots

This pattern is followed for all the other color classifiers to form the training

set for human-trained robot. Instances of other classifiers are then taken as negative

samples for a particular color classifier. As we are considering simple color classifi-

cation problem, we can safely state that all instances of other color classifiers can be

taken as negative exemplars. With complexity in the classification problem, where

a ‘carrot’ classifier can not be a negative example for an ‘orange’ classifier, we can

extend on the concept on cosine similarity put forward by Pillai and Matuszek [62].

Our current dataset is highly unbalanced where we have more negative samples than

the positive examples.
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4.2.2 Training Dataset for proof-of-concept approach for human-trained

robot

We build our learned models on linear SVM classifiers [84, 40, 15]. For testing

our built classifiers, we consider instances of objects with same color but di↵erent

category. For example, Lemons were replaced by bananas, tomatoes were replaced

by bell peppers. Replacing the object with other objects from the similar color

components allowed us to experiment with the actual color classification models

being independent of the objects to be classified(see 4.6, 4.7).

Type Color classifier Example instances

Tomatoes Red 15

Lemons Yellow 15

Oranges Orange 15

Lime Green 15

Garlic Gray 15

Blocks Blue 15

Table 4.1 Training set for human-trained robot where the number suggests the

number of instances of the object present in the dataset.
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Figure 4.6: Experiment 1: Training set for Co-located Similar-Sensor
Robots (visual representation).

Type Color classifier Example instances

Bell pepper Red 15

Bananas Yellow 15

Oranges Orange 15

Greens Green 15

Garlic Gray 15

Blocks Blue 15

Table 4.2 Test set for human-trained robot where there are fifteen of each object

present in the dataset.
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Figure 4.7: Experiment 1: Test set for Co-located Similar-Sensor Robots
(visual representation).

4.2.3 Simulation for Experiment 1: Co-located Similar-Sensor Robots

For first experiment, we considered sharing learned models with robots with

di↵erent sensor quality where our robot-trained robot has low quality camera(see

4.8, 4.9). We considered di↵erent instances of objects for training and testing of

human-trained robot—for example, di↵erent instances of bananas and lemons were

considered for the ‘yellow’ color classifier. Our simulation of chained learning ap-

proach involved human-trained robot teaching the robot-trained robot about the

instances of colors it sees around itself. The human-trained robot classifies these

images and provides the ground truth to the robot-trained robot. For simulating

the teaching scenario, we created identical datasets for the two robots. Plain RGB

images in the dataset were then labeled by human-trained robot and labels were
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provided to the robot-trained robot. The images in the dataset were now converted

to HSV image format. We simulated the low quality camera simulation by decreas-

ing the hue and saturation of the images in the dataset. An instance of some of the

modification in the database created are shown in figures 4.8 and 4.9:

Figure 4.8: Experiment 1: Instance of banana as seen for human-trained
and robot-trained robot.

Figure 4.9: Experiment 1: Instance of bell pepper as seen for human-
trained and robot-trained robot.
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The robot-trained robot is trained on the low quality images that we created in

the database and labels provided by the human-trained robot. With the classifiers

built for robot-trained robot using SVM classifiers [88], we tested them against a

test dataset created of di↵erent instances of object in training, simulating as if the

instances of images were taken from a low quality camera.

For conducting the experiment for chained learning approach, we chose MAT-

LAB. It has many built-in functions that are tested over years providing reliability.

We built color classifiers for orange, green, gray, blue, yellow, red. Building the mod-

els for binary classification involved using linear SVM with 4-fold cross validation.

Feature vector obtained from the dataset was an average of the R-G-B components

of all pixels values for each image. To overcome the problem of background noise

and lighting e↵ect, we decided to apply a binary mask on the images in the dataset

before we run any classifiers. Including more instances of negative samples to the

training samples also significantly improved the results.

4.3 Experiment 2: Sharing learned models in Qualitatively Di↵erent,

Co-located Sensors

Transferred learning in heterogeneous robots with qualitatively di↵erent sen-

sors is a challenge as compared to the transfer learning in robots with di↵erent

physical sensors. To test our approach on complex data models, consider a scenario

where the two heterogeneous robots have qualitatively di↵erent camera. In this

experiment, we consider a more complex task domain. Object identification is cor-
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rectly identifying the object in the images. For the purpose of experimentation, we

assume that the object to be identified covers the entire image size. Human-trained

robot is perceiving its environment in the form of 2D image while the robot-trained

robot perceives it in the form of 3D images (see 4.10, 4.11). So our input to the first

robot are basically flat images.

4.3.1 Dataset for Experiment 2: 2D and 3D Images

Figure 4.10: Experiment 2: Instance of an apple as seen for human-
trained and robot-trained robot.
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Figure 4.11: Experiment 2: Instance of an lemon as seen for human-
trained and robot-trained robot.

Our dataset consists of 10 object categories namely tomatoes, apples, limes,

lemons, oranges, staplers, laptops, cereal boxes, napkins, soda cans(see figure 4.12).

We used the established image dataset from University of Washington containing

RGB-D images [40]. We spliced the total images into training set and test set for

the human-trained robot into half of the total number of images. Images considered

for the experiment were unmasked and taken with more focus on the object. With a

comparative study of the feature extraction tools at hand [32, 61, 35], we decided to

use the SIFT feature extraction tool for our transfer learning scenario. The training

set containing about 8910 images are applied to SIFT algorithm to extract features

from all the images. Total of 1.5 million features were extracted. The algorithm

then selected the strongest 80% features from each object category of the feature set

and applied k-means clustering on it. In order to improve clustering, we balanced

out the number of features in each category by selecting the category with the

lowest number of features extracted. We conducted experiments with the number
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of clusters to be used in k-means clustering algorithm.

Figure 4.12: Dataset for experiment 2

Number of clusters Within group distance with centroid (avg)

100 100

200 62

300 51

400 47

500 25

1000 25

2000 24

Table 4.3 Experiment 2: Determining K value for K-means clustering
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Figure 4.13: Graphical representation for k-means clustering result. We
selected k using the elbow method.

We selected 500 because very small number of ‘k’ will not categorize the objects

properly while large number of k may lead to over fitting of the model and will not

be able to generalize the category over variety of objects(see 4.13). This entire

process reduces the number of features generated to a ‘bag of features’ consisting of

‘k’ visual words. We then trained the robots using linear SVM and the generated

bag of feature.

4.3.2 Second part of experiment 2: 3D object classification

With the first part of our experimentation working, we considered the robot-

trained robot which takes input as 3D images. An important step of object recog-

nition task is to extract expressive features from high-dimensional structured data.
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Hierarchical Matching Pursuit (HMP) [40, 10] extracts expressive features and

gives good accuracy even for linear SVMs. This makes the feature extraction algo-

rithm perfect fit for our experiment. As the 3D images are large data files which

take a lot of computing time, we consider only a subset of the entire dataset for our

experiment.

Number of files processed per category Features extracted Accuracy(%)

625 500 100

625 50 99.28

625 5 95.46

100 500 100

100 50 98

100 5 96.5

10 500 100

10 50 100

10 5 100

Table 4.4 Experiment 2: Comparison for various values of number of files, features

extracted and accuracy to select the approximate values for HMP in images

selection

From the following table, we concluded that around 100 images in each cat-

egory and 50 extracted features would be a better fit for the feature extraction

pipeline. To maintain a uniformity over the entire dataset we randomly extracted

100 images from each category for the object recognition experiment with 2D images
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as well. We then applied a 4-fold cross validation on the 3D dataset to give a total

accuracy of 94%. To improve the accuracy of 2D object identification, we applied

4 fold cross-validation on the dataset. The resultant accuracy of the model was

approximately 98%. To simulate the environment as if a human-trained robot with

2D sensors is transferring models to a robot-trained robot with 3D sensors, we repli-

cated the procedure we carried out for the first experiment. We created a dataset of

image instances with depth information where each category had 100 images. We

took similar instances of objects from di↵erent rotational angle to simulate as if

human trained robot is seeing those images. We labeled the 3D image set with the

result obtained from 2D images and provided them as an input to the 3D classifier in

our pipeline. Accuracy of the classifier dropped to 89.6% when the labels were taken

from object identification using sift + SVM classifiers. We provided a pipeline for

sharing learned models when robots are co-located but have qualitatively di↵erent

sensors.

4.4 Experiment 3: Sharing learned models in Non Co-located Robots

We cannot always assume that the human-trained robot and the robot-trained

robot would be in the same physical environment. Domain adaptation [75] transfers

the learned models from one robot to another without presence of actual shared

physical workspace. In this experiment, we considered the same dataset as the first

experiment where the robots had similar sensors. The human-trained robot trains

on the modified image dataset, that is, simulated images taken from a low resolution
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camera. The learned models are then directly transferred to the robot-trained robot

where the image dataset consists of original RGB images. The robot-trained robot

tries to classify the images in its dataset using the provided classifiers. The result

was thus collected. For the subsection of this experiment, we try to determine if the

approach is e�cient if transfer of classifiers is done from an original RGB camera

sensor robot to modified low quality sensor robot. or vice versa.
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Chapter 5

Results

In this section, we analyze the outcome of the three experiments conducted.

A detailed description of the experiments provided in the previous section gives an

insight into the experiments conducted with the three types of scenarios.

5.1 Results for experiment with collocated, similar sensor robots

To avoid the errors due to background noise and lighting e↵ect, we masked

the images in the dataset. Masking allowed the classification to be focused on the

object rather than on surrounding environment. After applying the binary mask on

the images, overall accuracy increased from 73% approximately to 88.27%. With

improved results, we included a few more classifiers and images in the database.

Scaling the dataset did not a↵ect the accuracy of the trained model for human-

trained robot. With our first classifier in place, we simulated the environment for

robot-trained robot and calculated the loss of accuracy over the chained transfer.

The accuracy dropped further to 79.05% with just two levels of chaining.
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Table 5.1 Experiment 1: Results of independent binary classifiers

(columns) on a held-out test set of objects (rows). The largest con-

fusion is between red and orange objects, due to color similarities in the

test set, and blue and gray objects, because the objects labeled ‘gray’

were inconsistently colored. Each cell gives the number of objects of that

type classified as positive by that classifier.

Table 5.1 shows the confusion matrix for the step 1 of Chained Learning ap-

proach for the experiment 1. From this table, we analyze that red and blue color

classifiers performed poorly as compared to other classifiers. Though gray did not

mis-classify any object but it did have a poor performance on recognizing gray

objects.

Some reasons for misclassification:

As some the tomatoes were ripen, some tinge of orange color was observed on

the skin of ripen tomatoes and hence they were misclassified as oranges(see 5.1).
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Figure 5.1: Reason for confusion in red classifier

Gray image instances had variation in color where the shades of purple varied

in the garlic example. An example of this variation can be seen in the figure 5.2.

Figure 5.2: Reason for confusion in gray classifier
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Table 5.2 Experiment 1: Results of independent binary classifiers

(columns) on a held-out test set of objects (rows). The largest confusion

is between red, yellow and orange objects, due to color similarities in the

test set, and blue and gray objects, because the objects labeled ‘gray’

were inconsistently colored. Each cell gives the number of objects of that

type classified as positive by that classifier.

Table 5.2 provides a confusion matrix for the step 2 of chained learning al-

gorithm. The misclassification rate increased when robot-trained robot is provided

labels as ground truth from human-trained robot. Here, blue classifier behaves

abnormally due to the similarity in the feature vector(R-G-B) of the two color im-

ages(see 5.3).
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Figure 5.3: Reason for confusion in blue and gray classifier

Some common reasons of misclassification are:

Orange, red and yellow images generate much similar shades when they are

modified as per the color sensor of robot trained robot. An instance can be seen in

figure 5.4.

Figure 5.4: Reason for confusion in orange, red and yellow classifiers

Also, initial training dataset had background which highly confused the sys-

tem. Masking the images helped to improve the accuracy of the classifiers greatly.

The problem that still persists in the system is e↵ect of lighting on the classifiers.

In the final experiment, an accuracy of almost 88.27% was attained which further

reduced on applying the ‘chained learning approach to 79.05%.
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5.2 Results for experiment with collocated, qualitatively di↵erent

sensor robots

For the experiment involving chained learning where models were transferred

between robots with di↵erent dimensionality, main reason for the fluctuating accu-

racy was consideration of huge dataset. . Also the number of features extracted were

large. This led to over fitting of the resultant dataset. With decrease in the number

of images in each category, we conducted the experiment with realistic results.

We got an accuracy of about 98% when we used the training set while 80%

accuracy on evaluation with the test set data. We generated a confusion matrix for

the test data.

Table 5.3 Experiment 2: Results of independent binary classifiers

(columns) on a held-out test set of objects (rows). The largest confusion

is between apple and tomato objects, due to appearance similarities in

the test set, and stapler objects, because the objects labeled ‘stapler’

were with inconsistent shape. Each cell gives the percentage of objects

of that type classified as positive by that classifier.
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The above experiment for object classification on 2D images gave a precision

of 0.8033, recall of 0.6453 while the sensitivity of the classifier was about 0.8193.

The overall model accuracy is 0.8033 for SIFT feature extraction while the f-score

measure is about 0.7157.

Some of the reasons for misclassification: Apple and tomato classifiers showed

the highest misclassification rate due to similarity in shapes, feature vectors and

variation in the color of instances of these objects(see 5.5).

Figure 5.5: Misclassification in tomato (left) and apple (right) instances

Mis-classification in 2D images due to illumination is avoided by applying

SIFT algorithm which is invariant to illumination. Stapler was not able to identify

stapler objects because of the variety in the shapes of stapler instances used in the

dataset(see 5.6).
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Figure 5.6: Misclassification in stapler instances

This experimentation was further expanded to the di↵erent dimensionality,

where we trained our model on the 2D images with RGB values and expanded

the result to include RGB-D features of the resultant 3D images. Accuracy of the

pipeline with perfect labeling was calculated to be 98% which dropped to 89.6% on

providing ground truth from the human-trained robot.

Thus, we could transfer learned models between two robots with varying cam-

era quality but the process is lossy.
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5.3 Results for experiment with non co-located robots

Table 5.4 Experiment 3: Results of independent binary classifiers

(columns) on a held-out test set of objects (rows). We see the worst

performance for orange and green classifiers, while gray was not able to

classify any object labeled as ‘gray’ Each cell gives the number of objects

of that type classified as positive by that classifier.

In this experiment, we consider two non co-located robots to share learned

models where the human-trained robot and robot-trained robots have di↵erent sen-

sors. As the classifiers were trained on modified image set, which had hue and

saturation reduced to half, and then were transferred to the robot-trained robot,

the rate of misclassification was high. For the purpose of simplicity of the exper-

iment, we have made some assumptions like learned models are built on classi-

fiers that are not tuned. Also, considered the hue/saturation/resolution reduced

to half as an arbitrary case. We did not experiment with the di↵erent values of

hue/saturation/resolution.
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Table 5.5 Experiment 3: Precision, recall and f measure values for each

classifier. We see the worst performance for almost all the classifiers

except ‘blue’.

We think that the reason for poor performance of remaining classifiers is due

to lack of labels for the robot-trained robot. Some reasons for misclassification:

Modified images of red and orange had a similarity in the color vector. The

presence of a tinge of red in garlic instance is the major reason for mis-classification

of garlic by red classifier. Modified images of gray were as good as feature vector of

white classifier. Thus, it was not able to identify any of the color correctly. Main

reason for not getting a good accuracy is because we used the images from low

quality camera to train the classifiers and used them over original images without

any modification. So the color classifier were not the original representation of the

colors. This was the first step of our experiment to transfer learned models in non

co-located robots. Future steps of the experiment include assigning some labels to

the robot trained robot and to see how the classifiers behave for such a scenario.

In the experiment, if we were to consider all the objects to be true examples, the

accuracy of the transferred learning would have been 12.5% but as we are using the

base prior knowledge of previous classifier to train the robot-trained robot, accuracy
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of the experiment is about 67.22%. We calculate the precision, recall and f-score

measure as 0.329, 0.833 and 0.471 respectively. From these values we conclude that

the classifiers returned almost all relevant results. While we got a low precision

means it was able to predict many irrelevant objects as well. F1 score of the entire

experiment is 0.471.

For the second part of this scenario, we considered a transfer of learned models

from ordinary RGB camera to a low resolution camera.

Table 5.6 Experiment 3: Results of independent binary classifiers

(columns) on a held-out test set of objects (rows). We see the worst

performance for almost all the classifiers except ‘blue’. Each cell gives

the number of objects of that type classified as positive by that classifier.
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Table 5.7 Experiment 3: Precision, recall and f measure values for each

classifier. We see the worst performance for almost all the classifiers

except ‘blue’.

In this experiment, we considered the scenario where we are transferring the

classifiers trained on RGB images directly to be tested on modified images. We cal-

culate the precision, recall and f-score measure as 0.310, 0.5 and 0.861 respectively.

Though both the tests perform equally bad in both the scenarios, from the f-score

measure we conclude that transfer learning performs better when we transfer the

classifiers from original good quality camera to a low quality camera rather than con-

ducting the transfer vice versa. Though this was overall a failed attempt at transfer

learning, we learned that providing labels may be a better point of improvement in

the experiment.
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Chapter 6

Conclusion and Future Work

Transfer learning in heterogeneous robot environment is an unexplored topic [48].

We conducted three experiments concerning our research question to validate the

possibility of sharing the learned models in any conditions between heterogeneous

robots. Our first experiment considered the scenario where two communicating

robots were collocated and had similar sensors. The robot-trained robot had a low

resolution camera that made the source and target domain have di↵erent data dis-

tributions. Physical presence of the human-trained robot to teach the robot-trained

robot proved to be a major advantage for labeling the target data. In the second

experiment, we repeated the same experiment of sharing learned models between

robots with qualitatively di↵erent sensors. While in the third experiment, the two

robots communicating their learned models were considered to be at di↵erent loca-

tions. By conducting the experiments, we conclude that it is possible to transfer

the learned models between robots with di↵erent sensors irrespective of if they are

non collated or they share a common workspace. Sharing of learned models has

shown to give a better accuracy as compared to self learning systems [65]. ‘Chained

learning approach’ introduced in the dissertation lays a foundation for research in

the shared learning domain. Scalability of the dataset does not a↵ect the loss of

accuracy over the pipeline.
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As this area of research lies unexplored, there is plenty of scope for future

work. For the purpose of experiment, we stuck to the default value for threshold of

the classifiers. We did not experiment enough with the values. We can conduct the

experiment with many di↵erent values to see how that a↵ects the loss of accuracy

of the model. Also, we did not experiment with the hue, saturation and resolution

values. So we can see the function of how the change in quality of images have an

e↵ect on the experiment performance. We can also, combine the work on joint model

learning [49, 87] and negative exemplars [62] to build better learned models to be

transferred. Domain adaptation [25] is emerging as an interesting field of research.

For this research, we conducted the experiments by simulating the environment in

which the two robots communicate with each other. But in future, we plan to use

the real dataset collected from actual robot sensors and process the entire ‘chained

learning approach’ in real robot environment. Thiel et al. [73] discussed the novel

idea of collaborative work in hospital environment where multiple robots e�ciently

work together to take care of patients by distributing and scheduling tasks. With

sharing of the learned models between robots, this task can be accomplished with

minimum human interaction.

55



Bibliography

[1] Michal Aharon, Michael Elad, Alfred Bruckstein, et al. K-svd: An algorithm
for designing overcomplete dictionaries for sparse representation. IEEE Trans-
actions on signal processing, 54(11):4311, 2006.

[2] Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan, Lawson LS Wong,
and Stefanie Tellex. Accurately and e�ciently interpreting human-robot in-
structions of varying granularities. arXiv preprint arXiv:1704.06616, 2017.

[3] Adam Baumberg. Reliable feature matching across widely separated views. In
Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Confer-
ence on, volume 1, pages 774–781. IEEE, 2000.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In European conference on computer vision, pages 404–417. Springer,
2006.

[5] Tony Belpaeme, Paul Baxter, Robin Read, Rachel Wood, Heriberto Cuayáhuitl,
Bernd Kiefer, Stefania Racioppa, Ivana Kruij↵-Korbayová, Georgios Athana-
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