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ABSTRACT

Title of dissertation: Learning Natural Language from Probabilistic
Perceptual Representations with Limited Resources

Nisha Mannukkunnel Balan Pillai
Doctor of Philosophy, 2021

Dissertation directed by: Assistant Professor Cynthia Matuszek
Department of Computer Science
and Electrical Engineering

The advent of artificially intelligent technologies has generated an explicit requirement to

study the semantic comprehension of perceptual and semantic world experiences. My thesis focuses

on designing an integrated grounded language acquisition system composed of linguistic and

visual symbols generated by obtaining meaningful perceptual representations from a physically

grounded world. Specifically, my research presents semantic models that holistically enhance

language acquisition by enabling learning systems to construct concise, category-free language

from visual content.

Definitive knowledge of a visual concept requires not only a precise understanding of its

positive information (information that provides a valid inference about a subject) but also of its

negative information (information that provides information about what a subject is not). Obtaining

negative examples of language referents is a challenging problem; people tend to describe things that

are true of a particular situation, rather than negatives about it [199, 64, 56]. To address this problem

in information acquisition, in the first work I employed semantically inferred linguistic information

to overcome the difficulty of naturally finding negative perceptual data. My experiments show that

such semantic measures are effective in choosing positive and negative samples for perceptual



learning, thus reducing the need for explicit data collection.

My research also explores the complexities involved in multimodal language–visual grounding

tasks. In the second work presented in this thesis, I quantify the complexity of linguistic and

visual observations associated with multi-modal language acquisition to help researchers make

informed design decisions that grounded language learning performance. I employ entropy-based

and compression error-based metrics to quantify the diversity in visuo-linguistic grounding inputs.

The results formalize the linguistic and visual complexity present in language acquisition tasks and

provide insight into the cross-modal grounding performances to keep task success consistent in the

following works.

Subsequently, in the third work, I present and explain how a correctly presented order

of visual content accelerates language acquisition and makes it more efficient. I demonstrate

the benefits of careful selection of representative and diverse samples from a pool of unlabeled

visual representations using active learning techniques and advanced language acquisition. For

this purpose, I utilize probabilistic clustering characteristics and point process modeling as active

learning strategies. My research also explores the user experience side of interactive learning in

grounded language acquisition using a joint model of vision and language.

Finally, this research presents a unified generative method that infers meaningful, represen-

tational, and latent visual embedding for generalizing language acquisition. Such a generative

approach helps grounded language acquisition to move away from learning predefined categories

and toward category-free learning. I tackle the problem of category-free visual language learning

using unsupervised approaches. Experimental results indicate that the methods suggested are com-

petent in building semantic, linguistic, and visual models and make grounded language acquisition

more efficient.
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Chapter 1

Introduction

Recent advances in artificially intelligent systems shape human life and reduce the need for

human effort in every facet of life, including education, manufacturing, and medicine. However,

developing competent intelligent systems is difficult, as a myriad of factors contribute to how people

understand and reason about their surroundings and experiences. Language and visual perception

play a vital role in forming these mental models to think, express, communicate, and coordinate.

An intelligent system should therefore be able to learn from its surroundings to conceptualize,

ground, and converse about its experiences, while interacting with untrained, naturally behaving

humans. My thesis is centered around grounded language learning in which intelligent systems

efficiently learn how linguistic constructs are grounded in the underlying perceived world.

1.1 Motivation and Goals

As Andrew Ng, the former director of Google’s AI team, stated, “We may be in the eternal

spring of AI [221].” The proliferation of intelligent systems and modern technologies has increased

the popularity of AI-based approaches in the present-day digital world. As these technologies

become more capable and affordable, the potential to deploy them in human-centric environments

becomes more realistic. For these intelligent systems to be beneficial to society, they need to be able

to take instructions from people in a natural, intuitive way [189], including instructions pertaining

to—that is, grounded in—the specific environment in which they are operating.
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An intelligent system internalize their experiences by analyzing the complexities of their

environment, building semantic models based on those intricacies, and generalizing their conceptual

learning to execute instructions from humans naturally in the real world. When operating in novel

environments, such intelligent systems need to learn the language quickly and accurately from

limited data. By enhancing learning, the intelligent systems provide innovative yet light-weighted

services to humanity.

Semantic representations of real-world environments are powerful tools for supporting user

interactions and action planning. My goal is to obtain such representations from conversations with

users, allowing physically situated agents to learn appropriate world models “on the fly” for a wide

range of situations. Learning these models from natural language provides a framework for learning

semantics at the appropriate level of granularity in an intuitive and natural way. In this thesis, I

intend to address the obstacles and challenges of interactive perceptual language learning.

1.2 Roadmap and Contributions

The primary objective of my thesis is to advance the learning of noisy and natural language

associated with visual percepts, which robots encounter during real-world interactions with naturally

behaving humans. My contributions to an end-to-end natural language understanding are in four

areas: deriving negative perspectives of the world, estimating the complexities of visual and linguistic

experiences, optimizing perceptual learning using active learning techniques, and deriving a generic

semantic model of the perceived world. Taken together, these four areas of contribution demonstrate

that an intelligent system with no prior knowledge can construct generic linguistic semantic models

from fewer annotations and more efficient learning than existing approaches.
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1.2.1 Deriving a Counter-Perspective for Visual Experiences

Building semantic models from natural language is challenging. The way in which people use

language is frequently not a good basis for statistical learning systems. For example, descriptions of

physical things rarely contain negative data; it is unusual for people to provide negative examples

without prompting (e.g., objects are rarely described as “not yellow.”). A lack of a positive label

does not imply a negative grounding. Something described as “an apple” is not a good negative

grounding for a “red” classifier. This problem affects parser learning [70], lexical acquisition [167],

and human grammar acquisition [21, 108].

As an effective solution to this problem, I generated counter-visual perspectives using semantic

similarity measurements to learn linguistic concepts. I also measured the effectiveness of these

similarity metrics through human experimental evaluation. Additionally, I calibrated the differences

in grounded language acquisition performance using various thresholds for the similarity metrics.

1.2.2 Estimating the Complexities in Visual and Linguistic Experiences

In grounded language acquisition, visual samples acquired from a physical or simulated

context are used to drive language learning. Handling grounded language is a challenging problem

for many reasons. When language is paired with real, physical data from robot sensors, groundings

must be learned from often noisy, ambiguous, and complex channels. Although significant recent

efforts have been made on grounded language learning [81, 198, 208, 225], there has been little

emphasis on understanding the traits of the inputs involved. In this work, I aim to correct this by

analyzing the visual and linguistic complexity of real, physical data.

In this work, I provide analytical, quantifiable statistical tools to represent the complexities
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in visual and linguistic features. Entropy-based statistical measurements indicated the variations

present in natural language descriptions of different traits of objects in the environment. I use these

results to outline the reasons behind the difficulties involved in learning different traits from natural

language. In addition, I explain how a compression technique can be used to measure the variance

in visual images. Finally, I quantify the challenges of learning different visible traits from the

environment.

1.2.3 Optimized Active Learning for Language Acquisition

Machine learning of grounded language often demands large-scale natural language anno-

tations of things in the world, which can be expensive and impractical to obtain. It is not feasible

to build a dataset that encompasses every object and every possible linguistic description of those

objects. Novel environments require symbol grounding to occur in real time, based on inputs from

a human interactor. Learning the meanings of language from unstructured communication with

people is an attractive approach, but requires fast, accurate learning of novel concepts. People are

unlikely to spend hours manually annotating even a few hundred samples, let alone the thousands or

millions commonly required for machine learning.

In this work, I studied active learning, in which a system deliberately seeks information

that will lead to an improved understanding with less data than more passive approaches, as a

means of minimizing the number of samples/human interactions required to learn about a topic.

This research compares pool-based and uncertainty-based active learning approaches in classifying

distinct traits of real-world percepts. Additionally, I verified the performance differences with

respect to different machine learning algorithms for pool-based active learning methods. For this,
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variants of probabilistic-based Gaussian mixture models (GMMs) and determinantal point processes

(DPPs) were considered. I studied which machine learning algorithms and which active learning

approaches were able to achieve better performance with limited training data. Furthermore, I

evaluated the effectiveness of neural-based features relative to traditional non-neural features in

active learning. In summary, this research explores a principled study of active learning approaches

in unsupervised data sampling techniques.

1.2.4 Comprehensive Representation of Visual Experiences

The joint modeling of language and vision [127, 153], wherein natural language is paired

with sensor information to train visual classifiers, allows learning when both the language space

and the perceptual space are novel. That is, such systems can learn novel words describing objects,

attributes, or actions that do not already exist in the formal representation language. Although this

method learns language groundings from visual features for multiple attribute classes, in previous

attribute learning work classifiers were still trained for specific domains, such as object type or color.

However, modeling semantics that are specific to particular attribute types still constrains language

acquisition.

In this work, I present general visual classifiers that learn language without relying on

predefined visual categories. My method generalizes language acquisition by using novel, generally

applicable visual percepts from natural descriptions of real-world objects. I evaluate its efficacy

by predicting the visual semantics of ground truth objects and comparing the performance with

neural and non-neural baselines. I use a latent discriminative model to learn the low-dimensional

representative features for category-free language learning. The performance of this approach
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is assessed with a limited data training set and high resource training data. A detailed analysis

of concept-wise performance elucidates additional information on the intricacies involved in the

learning problem.

1.3 Organization of Dissertation

Chapter 2 provides details of the background and related work involved in my research. It

describes grounded language acquisition, active learning approaches, paragraph vector (PV) models,

and variational autoencoders (VAEs). It also lists existing past research works on grounded language

acquisition and active learning approaches. Chapter 3 describes an effective unsupervised approach

to obtain counter-visual exemplars from positive language descriptions. Chapter 4 is dedicated to

measuring the complexities involved in grounded language acquisition in multilingual multimodal

data. In Chapter 5, I analyze how different active learning sampling approaches influence grounded

language acquisition. Chapter 6 presents an effective unified generative method to acquire shared

semantic/visual embedding for learning natural language in a category-free manner. Finally, Chapter

7 concludes the thesis with the major contributions of this research and presents a description of

ongoing work.
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Chapter 2

Related Work, Background, and Data Corpus

As artificially intelligent devices such as robots have become safer and more capable, the idea

of deploying them in situations where they interact with non-specialists (e.g., in homes, hospitals,

or schools) has become more realistic. However, in order for non-specialists to interact with these

robots, they need a means to communicate with them. Natural language is an intuitive and widely

understood way of conveying instructions and information. However, building appropriate language

models for a wide range of real-world situations and users is an enormous challenge, particularly in

the area of grounded language, wherein language refers to objects and actions in a particular robot’s

perceptual world. To address this, I aimed to obtain representations from conversations with users,

allowing systems to naturally learn world models applicable to a wide range of situations. Learning

these models from natural language provides a framework for understanding such semantics at the

right granularity in an intuitive, natural way.

In this chapter, I will cover the background, related work, and the datasets used in this thesis.

In particular, background topics for my thesis include natural language processing, and statistical

and machine-learning models.

2.1 Data: Corpora and Features

Throughout this thesis, I use two existing datasets for learning from descriptions: the UMBC

dataset [152] which contains 72 objects (see Fig. 2.1), and the UW RGBD+ dataset [107], which

7



contains 300 objects.

Figure 2.1. Sample RGB images for each class in the UMBC dataset, as taken with a Kinect v2 camera and
presented to Mechanical Turk annotators.

Language. The corpora consists of Kinect2 depth images of objects paired with human

descriptions. Each object instance has multiple associated language descriptions. The RGB images

were posted on Amazon Mechanical Turk to obtain descriptive language, and users provided short

descriptions. I use three different language descriptions for UMBC dataset: English, Spanish, and

Hindi. While Kery [88] collected 5,100 Spanish and 5,700 Hindi descriptions for the UMBC dataset,

I collected approximately 6000 natural language English descriptions for the same dataset(see

Fig. 2.2). Similar to Richards and Matuszek [164], Kery et al. [89], I worked on learning to

understand language referring to different types of characteristics: COLOR, SHAPE, and OBJECT

TYPE (see Fig. 2.3). The UMBC object dataset contains 8 color, 9 shape, and 18 object characteristics.

While the Spanish language dataset contains 35 color, 51 shape, and 138 object concepts, the Hindi

descriptions include 25 color, 34 shape, and 135 object concepts. Shape and object concepts in both

the datasets are highly varied and diverse, causing the classification to be difficult. Color concepts

in the Spanish set seem concise and less varied, but gender-based inflectional differences in the
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Figure 2.2. Sample RGB images in the UMBC dataset, as taken with a Kinect2 camera and shown to
annotators [153]. In this visually varied dataset, shape and object classification are nontrivial.

description cause the color concepts diverse in the Hindi set. For the second dataset, I used the

1500 English descriptions collected by Richards and Matuszek [164] for UW RGBD+ dataset. The

UW RGBD+ dataset includes 14 color, 13 shape, and 51 object characteristics. Shape concepts are

reported only in 9.5% descriptions of all 300 object UW RGBD+ dataset annotations. In the UMBC

dataset, 53%, 14%, and 73% of annotations reported color, shape, and object concepts respectively.

Across all combinations I found that COLOR is relatively easy to learn; SHAPE, which depends in

part on camera angle and is less likely to be mentioned, is more difficult; and OBJECT TYPE is the

finest grained, with the highest visual complexity.

Visual Perception. The physical context for language grounding is provided by depth

and color images of each object, taken with an RGB-D camera mounted on a typical of a robot

sensor platform. From each RGB-D image, I extracted perceptual features ⌘TRAIT for each type of

characteristic. I used three different types of visual features for learning. First, for a kernel descriptor-

based approach, I used the average RGB values for color, HMP-extracted kernel descriptors [107, 19]
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Type Image English annotation

color This is an orange object.

shape This looks like a green upside down C shape.

object
type

This is an Italian Eggplant. It is firm and dark purple
when ripe.

Figure 2.3. RGB-D sensor data and descriptions [153]. Each concept was used by multiple annotators
to describe each of the corresponding images, showing the noise and variability of human
descriptions.

for shape, and a combination of the two for objects. Kernel descriptors were model size, 3D shape,

and depth edge from the RGB-D depth channel, and were efficient in shape and object classification.

While this set of features does not use a neural network, I experiment with them because they are a

proven and reliable set of features within the robotic-based vision and language processing [127].

In the second approach, I used a convolutional neural network, Neural Architecture Search network

(NASNetLarge) [227], with pretrained ImageNet [46] weights for extracting a 1024-dimensional

feature vector from the RGB images. It is proven effective in visual classification as Neural

Architecture Search Network (NASNetLarge) obtained better top-1 and top-5 accuracy on multiple

datasets compared to popular architectures like ResNet, Inception, and VggNet. In the third case, I

extraced a 1024 dimension feature vector from SmallerVGGNet, a variant of the popular and strong

object classifier VGGNet neural architecture Simonyan and Zisserman [183].

2.2 Grounded Language Acquisition

Describing human thinking as a symbolic system resulted in a myriad of ways for researchers

to envision the future of artificial machines that think, “as we may think [24].” Five years after
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that initial revelation, Turing [201] proposed the notion of intelligent machines in his famous Mind

paper in 1950. Since then, to fit a wide spectrum, research in the field of artificial intelligence has

widened its definition of what thinking is. The core element of this thesis fits within that widened

spectrum, specifically into the category of grounded language acquisition, which is the integrated

learning of language and environment [138, 69, 137, 142, 174]. The core question that I intend to

answer through my research is, “How can an intelligent system effectively learn the semantics of

language associated with its perception from very low resources?”

In grounded language theory, the semantics of language are based on how symbols connect

to the underlying real world through the so-called “symbol grounding problem [69].” Recent

researchers have addressed two main problems in this domain: language understanding and language

generation [193]. Recent research, such as Song et al. [186], has proposed a model that integrates

language grounding and language generation into one framework. My thesis contributes to this body

of work, specifically to the effective language grounding of real-world percepts in low-resource

settings. My work falls under three main areas: learning mappings between language and predefined

object categories, learning mappings between language and generalized object perspectives, and

improving learning from reduced resources in a robot-driven setting. My primary objective is an

intelligent learning system that grounds the recognition object (defined by a set of visual percepts

from the real world) to a canonical symbol, for example, producing the symbol ‘eggplant’ when it

sees an eggplant. When a user asks, “Please grab me the eggplant,” the robot should ground the

natural language word “eggplant” to the same symbol that denotes the relevant visual percepts. Once

both language and vision are successfully grounded to the same symbol, it becomes possible for the

robot to complete the task. I teach the robot this connection by using physical sensors in conjunction

with language learning; paired language and perceptual data are used to train a joint model of how
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linguistic constructs apply to the perceivable world.

Grounded language acquisition is generally relevant for a wide range of applications. Similar

to language generation, scene or image generation has also attracted attention in this domain. Cheng

et al. [35] generated realistic scenes conditioned on natural language descriptions. They used object

instances from the Internet to synthesize scenes. In another study, Yan et al. [212] generated an image

from visual attributes (age, hair, gender, expression, etc.) using a VAE framework. In contrast, my

efforts are in the opposite direction, namely to learn the grounding of language from a generalized

perspective. A wealth of research has contributed toward the field of language generation, including

on caption generation for news images [15, 53, 78, 102, 60, 76, 54, 55] and description generation

from images of videos [202, 218, 14, 96, 97, 33, 215, 113, 147]. Barbu et al. [11] presented sentence

descriptions that included properties of objects, such as color, shape, and size, from videos using

natural language collected from AMT. My work also associates objects’ characteristics with natural

language from AMT, but my application focuses on robots learning the language in real-world

settings. Higgins et al. [77] train a robot in combining fully simulated sensing and actuation with

human interaction. Guadarrama et al. [66] developed a technique to describe the main activity

taking place in a sample video by predicting approximate action words using a hierarchical semantic

approach learned from the data. In a similar application, Huang et al. [83] introduced a visual

language for visual storytelling. My work is related to this wide range of vision–language problems,

but I focus specifically on learning the groundings of language.

Visual grounding, which involves relating expressions to images [117, 45, 213] and videos [223,

168, 214], has been effectively utilized in many different ways. The most popular 3D visual ground-

ings [44] associate objects from segmented scenes with expressions. A recent approach [119] fuses

the language and visual features to localize the relevant regions from the unsegmented, complete
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RGBD image. However, similar to Jenkins et al. [85], I used depth images taken with an RBB-D

camera mounted on a robot platform to map them with language attributes for my experiments. I

later segmented the objects and extracted the visual features to learn the association between visual

attributes and the related linguistic concepts. The problem space considered in this thesis assumes

that there are no pre-existing models of language or objects in the world. That is, an agent learns from

novel, previously unencountered language about previously unseen objects [127, 200, 126, 193],

making the evaluation more broadly applicable.

This thesis primarily focuses on learning the association between real-world objects and their

natural language descriptions. In similar research, Cohen et al. [41] demonstrated a method to

learn to disambiguate object instances within the same class. Krishnamurthy and Krishnamurthy

and Kollar [103] developed a method that learned the mappings of categorical concepts and their

relations from the statements with objects in RGB images. Chen et al. [32] developed a method that

learned the joint embedding between freeform text descriptions and colored 3D shapes, and Nguyen

et al. [146] mapped the object-based descriptions of their usage. Nguyen et al. [143] learned a

visual, linguistic association by sampling triples of anchor, positive, and negative data points

from RGB-depth images and their natural language descriptions. Al-Omari et al. [4] grounded

color, shape, location, relative direction, and relative distance as seen in video clips. These works

are related to my research, although I instead focus on grounding natural language descriptions

with object characteristics based on categories using depth and color images. Misra et al. [136],

similarly, presented a model that was capable of handling the ambiguities present in grounding

natural language instructions. Like the work composing this thesis, that research grounded the

often incomplete and noisy robotic instructions. In another similar work, Duvallet et al. [50] treated

language as a type of input sensor to formulate a prior distribution over the unknown parts of
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the environment to ground natural language instructions in unknown environments. In a similar

study, Chai et al. [29] teach a robot to ground actions by communication and action demonstrations

involved in interactive task learning using action demonstrations.

Vision- and language-based navigation is another popular research domain that generates

associations between visual and linguistic stimuli. Nguyen et al. [145] presented a grounded vision–

language task for finding objects in indoor environments with human assistance, with subtasks

such as “Go forward three steps, turn left.” In a similar study, Nguyen and Daumé [144] used a

simulated human assistant that provided natural language and visual instructions to direct the robotic

agent. Anderson et al. [6] provided the Room-to-Room dataset for navigation based on crowd-based

navigation instructions. Finally, Jain et al. [84] provided a new metric with which to evaluate the

end goals of a navigation sequence by including an evaluation of the sub-goals related to the success.

While these researchers aim to execute the commands, my work focuses on grounding real-world

objects with natural language.

Deep networking models have been successfully used in visual–linguistic mapping, includ-

ing bilinear attention networks [91], dual-attention networks [139], co-attention networks [220],

faster R-CNN [219], and reinforced encoder–decoder networks [224]. I have also used VAEs and

other popular deep networking models to retrieve object features and obtain meaningful visual

embeddings for building a semantic language association [165]. The semantic embeddings of

language descriptions can also be obtained using the PV deep network model [109] to obtain

similarity metrics of visual perspectives. Other deep network models have been widely used in

the natural language processing domain. Multilingual BERT [47], RoBERTa [120], XLM-R [43],

cross-lingual XGLUE [116], among others, generate pretrained language embeddings for multiple

vision–language tasks. On the contrary, for this thesis I generated language embeddings from the
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descriptions provided in real time for my semantic embedding models.

Although most studies in grounded language have focused on English [73, 39, 10], there

is a growing interest in multilingual grounded language. These efforts encompass both image

captioning [15, 53, 76, i.a.] and learning spatial relations [13, 52] domains. Kery et al. [89]’s work

on multilingual grounded object description is most relevant in this regard. Similar to Kery et al.

[89], my work also primarily focuses on visio-language grounding, but I analyze the linguistic

intricacies involved in multi-lingual visual groundings.

Thus, although significant recent efforts have been made on grounded language learn-

ing [81, 198, 208, 225], handling grounded language remains a challenging problem, in part

because groundings are learned from noisy, ambiguous, and complex channels.

2.2.1 Joint Model of Language and Vision

Throughout this thesis, I used the joint model of vision and language [127, 154], in which a

joint model of language and perception is used to acquire groundings for language that describes the

perceived characteristics of objects in the environment. This model allows for learning words that

have no pre-existing counterparts in the underlying formal grammar. In this approach, descriptions

are treated as labels for visual percepts, making it possible to learn novel languages that describe

entirely novel visual concepts.

Upon encountering an unfamiliar language token, the system creates visual classifiers trained

on percepts (for the vision system) and associated with tokens or keywords (for the language system).

Visual classifiers and language learning are treated as a single joint model with a shared learning

objective. The result is a set of visual attribute classifiers that identify objects in a scene as they are
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referred to in language.

As training data is added, the joint model obtains an expanding group of classifiers, and

repetition of object attributes reinforces classifiers related to the corresponding keyword. In this

way, keywords that refer to attributes of an object are likely to collect positive examples consisting

of similar percepts (similar colors, in this example). Such classifiers (e.g., associated with the

word “red”) will therefore gain predictive power. Classifiers with good predictive power then

collectively form the grounded language model, whereas classifiers with reduced predictive power

(e.g., associated with “its.”) can eventually be pruned.

The model is joint in the sense that each classifier, when created, is associated with a language

token, for example, new-classifier-called-‘‘red.’’This is a deliberately simplified

classification problem, as the goal of this work is to enhance multimodal robotic learning, rather

than to solve a novel vision problem.

2.3 Relevant Linguistic Concepts

To choose suitable language concepts for training visual classifiers, I relied on the well-known

tf*idf algorithm [170], which can be used to determine the descriptive power of terms [170], their

relevance to particular documents [226], or as a document similarity metric [169]. Previous research

described a method to select positive language samples when generating advanced sentences to

describe images by predicting the most likely nouns, verbs, scenes, and prepositions [215]. Similarly,

Cheng et al. [35] described a method that processed screen descriptions through a pipeline of natural

language components to identify verbs and their arguments.

In Chapter 3, I describe a unigram language model that I applied to learning visual classifiers
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for grounded language acquisition. I first converted descriptions of images into language concepts,

removing common stop words and lemmatizing the remainder. I then identified meaningful, relevant,

and representative concepts by applying tf*idf [170], which yielded concepts such as “banana”

and “yellow,” while rejecting less predictive words, such as “object” and “look.” Empirically, this

helps identify domain-meaningful words for which classifiers can be learned. Using this metric,

the score of a word decreases with the number of documents it appears in and increases with

the number of times it appears in a document. Terms such as “image,” “picture,” and “object”

appear in an overwhelming number of documents, but relevant terms such as “carrot” or “banana”

appear disproportionately in fewer documents. For example, for the image instance of a tomato, the

description could be “This is an image of a red tomato,” resulting in “image,” “red” and “tomato” as

focal tokens.

2.3.1 TF*IDF

To select relevant terms whose meaning needs to be learned, I used tf*idf, which stands for

term frequency-inverse document frequency, a well-studied metric reflecting how important a word

is to a document in a corpus. The tf*idf value of a term increases proportionally to the number of

times that term appears in the document, reflecting the relevance of the term to that document, and

the value decreases with the number of documents containing that term, reflecting its discriminative

power. Intuitively, if a term such as “cabbage” appears frequently in a document, it is important

to that document, but common words that appear in many documents, such as “very,” have less

discriminative power.

In this work, I use the simplest definition of term frequency: tf(t, d) is the raw count of
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the number of times a term t appears in the document d. The inverse document frequency is the

inverse logarithmic fraction of the number of documents that contain the term t from the set of all

documents D. This gives the tf*idf value of t for a particular descriptive document d:

tf*idf(t, d,D) = tf(t, d) · log N

|{d 2 D : t 2 d}|

where tf(t, d) is the number of times a term t appears in document d, N is the size of the set of

documents N = |D|, and |{d 2 D : t 2 d}| is the number of documents in which the term t appears.

I use tf*idf to separate relevant concepts from the descriptions, which returns concepts such as

“cucumber” and “green,” while discarding unhelpful concepts such as “picture” and “thing.” This

statistical technique was used to filter important concepts throughout the research presented in this

thesis.

2.4 Counter-Perspectives for Visual Samples

In my thesis, the next focus is to automatically generate negative perspectives in limited-

resource settings. In Chapter 3, I describe a way to automatically find negatives for visual percepts

in grounded language learning. The most straightforward approach is to explicitly collect negative

labels [191, 48], possibly through crowdsourcing [192, 94] or gameplaying [194]. However, this may

not be applicable for all methods of gathering language. Another possibility is to associate randomly

chosen groundings with terms that are not used to describe those images [182, 38, 98]. Goyal et al.

[65] used negative samples in their experiments by randomly choosing alternative samples from the

dataset, including or excluding positives. However, because the language used in these descriptions

is not exhaustive, this approach is noisy and may require manual cleanup [189]. Another practical
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technique is to design language collection trials that either use objects that have no shared visual

characteristics [127] or explicitly design trials that exhibit negative characteristics [172]. My work

is most similar to the fully unsupervised label identification of Roy [167], but it uses document

similarity metrics, rather than term clustering.

To find negative examples, I used a similarity metric to maximize the semantic distance

between object descriptions. My selection of negative labels used the PV algorithm (see section

2.4.1), which learns representations of features from documents of varying lengths [133, 134].

I employed the Distributed Memory Model of Paragraph Vectors (PV-DM) for this study [109].

Previous language representations have used vector models and multimodal topic models for image

retrieval [185, 118], whereas I used a vector model of language to measure the similarity between

descriptions of images [155]. There exist several popular approaches for representing language

concepts in vector embeddings, including GloVe [151], skip-thought [93], and FastText [20].

While Hu et al. [80], Jain et al. [84], Shi et al. [177] initialized language descriptions using GloVe

word embeddings, Liang et al. [115] used FastText, and He et al. [71] used skip-thought for

grounding natural language descriptions for videos. Goyal et al. [65], alternatively, embedded

natural language instruction with a combination of pretrained GloVe word embeddings and a two-

layer GRU [37]. Although these approaches are effective, the PV model is more memory efficient

and is most suitable for “on-the-fly” semantic model representation.

2.4.1 Paragraph Vector

Paragraph Vector is an unsupervised learning algorithm that maps documents into a fixed-

length feature vector that is robust against varying document sizes [109]. A neural network with one

19



hidden layer is used to derive the error gradients from the loss function, which is calculated using

the probability of words in a visual context given the input terms. This model is used to measure the

dissimilarity between descriptions. In the PV model, paragraphs and words within these paragraphs

are mapped to vectors P and W , respectively. The non-normalized log-probability vector of P is

calculated as follows:

y = b+ Uh

Here, yi is the non-normalized log-probability of a word in the vector, U and b are softmax

parameters, and h is a vector formed by the concatenation of word vectors W and the PV P .

Prediction of the “next word” in the context or “topic” of the paragraph is achieved using a softmax

classifier. A fixed-length sliding window is applied to choose contexts. Here, w1,w2, ...., wT denotes

the sequence of words being trained on:

p(wt|wt�k, ...wt+k) =
e
ywt

P
i e

yi

The average log probability is then maximized:

1

T

T�kX

t=k

log p(wt|wt�k, ...wt+k)

Training is performed using gradient descent with backpropagation. The output is a fixed-length

dense vector, as in a bag-of-words model, but retains the predictive power of a more semantically

informed model. The trained PV represents the “topic” of a document and has shown good perfor-

mance in predicting other terms that may be found in that document. PV maps every document to a
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point in a fixed-dimensional space, irrespective of their varying description size; from my empirical

analysis, 2000 dimensions provided sufficient representative power. Recent experiments (See figure

Fig. 2.4) show that the paragraph vector with 1000 dimension performs the best.

2.5 Linguistic and Perceptual Complexity Measures

The success of grounded language acquisition using perceptual data (e.g., in robotics) is

affected by the complexity of both the perceptual concepts being learned and the language describing

those concepts. Chapter 4 presents methods for analyzing this complexity using both visual features

and an entropy-based evaluation of sentences [159].

Linguistic complexity has been investigated through numerous psycholinguistic approaches,

including concreteness and imageability [122, 176, 74, 30, 75], cost of learning [12, 86], and

the length of words in the text [112]. While Ferraro et al. [56] presented multiple syntactic-,

concreteness-, and language modeling-based approaches for quantifying the complexity of vision-

Figure 2.4. F1-Score results of Language acquisition with varying paragraph vector size. The results suggest
that 1000 dimension give the best results.

.
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and language-based datasets, I am interested in examining the complexity of semantic traits

(i.e., categories of concepts) encompassed by those datasets. Therefore, many of these previous

approaches are less relevant to the problems I study, in that I intend to quantify the differences in

complexity, rather than discover the cognitive sources of those differences. Further, as my data are

drawn from robotics, almost all of the concepts being learned are similarly concrete, and not subject

to differences in human psychology.

Computationally measuring visual complexity in accordance with human perception is chal-

lenging. Human reactions can be influenced by familiarity, style, and other perceived factors, which

are challenging to evaluate and operationally define [124]. However, I intended to find an automated

measure for the concept complexity of an image [135]. As shape complexity varies widely [9],

compression techniques were used for this category [57, 49].

2.6 Active Learning to Improve Category-Based Learning

It has become increasingly apparent that an interactive learning system in which robots learn

from unstructured communication with untrained users is a necessary requirement in many contexts

of human—robot interaction. Chapter 5 aims to demonstrate a technique to learn widely diverse,

real-world objects with minimal labeling efforts, and to develop an approach wherein robots query

unclear information from users and can learn from their responses about the meanings of words

used to describe objects.

Active learning has been applied successfully to a variety of problems [95, 179, 23], providing

performance improvements in areas as diverse as learning from demonstration [27, 22], following

directions [72], and learning about object characteristics [196]. Although a well-chosen active
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learning approach can reduce the number of labels required for grounded language learning [5,

154, 114, 68], such an approach also raises questions about what queries to ask, and when to ask

them [26, 190, 184, 110, 63, 162].

Advances in active learning techniques have improved the ability to identify the most useful

data points. Unsupervised learning techniques, such as subspace clustering, have been used to

identify influential points from a cluster [150]. A hybrid method that connects active learning and

data programming [140] has shown improvements in the reduction of noisy data in large-scale

workspaces [34]. Similar to my work, active learning approaches [67, 211, 178] have been effective

in training biased and highly varied datasets. Additionally, researchers have put effort into utilizing

different active learning methods, depending on the complexity of the problem [59]. Traditional

active learning methods have also helped to improve performance in other tasks, such as finding

data faults or in fake news detection [79, 16]. Although in this work I consider efficiency as being

more important than time complexity, researchers have studied methods that are time efficient,

especially in large-scale applications [82]. Similar to my research, Chhatwal et al. [36] compared

two traditional active learning algorithms for selecting important points from a pool of training

data. Although similar, I also consider distinct machine-learning approaches with small-scale and

large-scale datasets in my comparisons. Various Bayesian techniques have also seen popular use in

selecting diverse points as the most influential from a dataset [160], and I use different variants of

determinantal point processes (DPP) to select distinct data points as the active learning technique in

batch sample selection [157].

Melville and Mooney [129, 130] developed a query-based committee model that used

diversity as a factor to build different feature ensembles. In addition, that work demonstrated that

this technique produced better results than traditional query-by-boosting and query-by-bagging
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models. The same method can also be effectively used to choose diverse feature selections, and

is used to enhance the quality of active learning by selecting appropriately diverse data points.

In addition, Melville et al. [131] used uncertainty sampling as a technique for effective feature

value acquisition. The selection of quality samples is beneficial in reducing costs associated with

misclassification. Finally, Melville et al. [132] used similarity measures on probability distributions

to estimate good class probability estimates.

In this study, my goal was to perform a principled exploration of selecting what data to query

for labeling [121], and basing that decision on informativeness and uncertainty metrics [204, 23]

from grounded language problems of varying complexity. I draw on existing techniques, particularly

pool-based learning [222, 100, 188], uncertainty sampling [111, 99], and probabilistic sample

selection [171]. I took inspiration from this body of research to select my set of experimental

approaches, which included sample selection via GMMs [42, 90] and DPPs [106], which have

proven effective in modeling diversity [61, 207]. Using supervised learners as active learning

techniques [17, 188] is not suitable for our current study because I concentrated on building a

language model capable of operating without prior knowledge [101].

My work is most closely related to that of Thomason et al. [197], who incorporated “oppor-

tunistic” active learning in a system that learned language in an unstructured environment [196, 148].

However, that work focused on opportunistically querying for labels whenever annotators were

present; in contrast, this work focuses on exploring the best way of selecting choices from a large

range of possible queries, reflecting the assumption that opportunities to query users for clarifying

details will often be severely limited.
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2.7 Generalized Language Acquisition

In the previous chapter, I described how visual classifiers used for language learning are often

still trained for specific domains, such as object type or color. However, modeling semantics specific

to particular attribute types constrains language acquisition. Concepts denote visual classifiers that

are then trained with visual features extracted from a fixed set of semantic categories. Previous

approaches are therefore limited to learning predefined visual categories, such as color, shape,

and object words [153]. Chapter 6 presents general visual classifiers that learn language without

relying on predefined visual categories. My method generalized language acquisition using novel,

generally applicable visual percepts generated from natural descriptions of real-world objects. I

propose a latent discrimination model to generalize the visual grounding using a VAE [158, 156].

My architecture predicts visual percepts associated with language by training the representative

latent probability distribution generated from cumulative visual features using a deep generative

model.

Representative embedding can be learned in several ways. Yang et al. [216] used VG-

GNet [183] to produce a representative embedding for images, whereas I used a single hidden layer,

deep generative VAE model to generate latent embedding from visual features. Shridhar and Hsu

[180] used a two-stage neural network model and the Visual Genome dataset to ground expressions,

such as object name, color, and shape. In contrast, I focused on grounding expressions from very

limited and sparse resources.

Autoencoding has proven useful for a variety of tasks, including image captioning [186],

image-to-image translations [205], sign language translation [40], machine translation [217, 123],

3D shape analysis [187], hand pose estimation [203], sentence annotations [3], denoising [125],
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and scene understanding [25, 161]. Silberer and Lapata [181] demonstrated a technique that uses

a stacked autoencoder that grounded semantic representations of concepts by mapping language

and vision into a joint embedding space. Although my objective is similar to theirs, they trained

stacked autoencoders for every modality by treating them separately and fusing them in the last layer

to obtain meaningful representations, whereas I combine all available raw visual features before

feeding them into a deep network with no differentiation among the attribute types. Therefore, my

technique has the benefit of requiring less supervised handling of the data. Nguyen et al. [145]

presented a long short-term memory (LSTM) based encoder–decoder model for language assistance

in vision-based navigation. Similarly, [80] encoded an instruction to actions in context with an

LSTM and decoded using an LSTM decoder that conditioned the encoded instruction and visual

features into output actions. Rohrbach et al. [166] also employed a deep network with LSTM to

ground textual phrases in images with no, few, or all grounding annotations available. By contrast,

in this work, I grounded the semantics of the learned concepts without specifying their attribute

types, using the annotations from natural descriptions provided by AMT users.

In summary, in this chapter I explained the background, related work, and datasets used

in this research. In the following chapters, I explain the set of research work that I conducted to

enhance interactive robot learning performance in the physical world. In the next chapter, I present

an effective approach to automatically select negative examples of visual concepts from descriptions

using language processing techniques.
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Chapter 3

Unsupervised Selection of Negative Examples for Grounded Language Learning

Modern applications of artificial intelligence have become increasingly dependent on their

ability to learn from people. In addition, the ability to understand and predict concepts related to

various objects based on human input is essential. My focus in this dissertation is to strengthen

grounded language learning by building generic, efficient semantic models to facilitate language

learning “on the fly.” To this end, for optimized perceptual learning, a learner needs to have both

positive and negative perspectives when operating in limited-resource settings. However, grounding

language with perceived concepts is frequently hindered by a lack of negative descriptions of

concepts. This chapter proposes an unsupervised system that learns visual classifiers associated

with words, using semantic similarity to automatically choose negative examples from a corpus of

perceptual and linguistic data.

I used statistical language processing tools to address two outstanding problems in grounded

language learning. First, I automatically selected which terms to consider as candidate labels for

Figure 3.1. Automatically selected terms and training data for grounded language learning.

27



visual classifiers; and second, I used document similarity metrics to select appropriate negative

examples from a corpus of training data (see Figure 3.1). I evaluated my approach with a novel

dataset of objects and descriptions (the UMBC dataset), and the initial results support the idea that

purely linguistic tools can be used to overcome weaknesses in the corpora of perceptual training

data.

3.1 Approach

I build on previous work that treats the grounding problem as one in which words are

associated with classifiers, jointly training classifiers and descriptive language to develop a semantic

understanding of the visual characteristics of objects [127, 154]. I used a two-step approach: first,

choosing relevant terms for which to train visual classifiers; and second, using semantic dissimilarity

between descriptions of objects to find negative examples of those terms.

Specifically, I concatenated all of the descriptions of a particular object, and treated that

concatenation as a “document” associated with that object. I then used tf*idf to find the most

discriminative terms for a particular document, and used all the objects that people described using

that term as positive examples for a classifier. I then chose negative examples by learning a PV for

each document and using cosine similarity to find the most distant PVs.

3.1.1 Selecting Relevant Terms

To select words to learn,I employed tf*idf to find discriminative terms from the set of

descriptive documents and passed it through an activation function to learn the importance of the

term to that document. Currently, the activation function used here is thresholding, however in
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Figure 3.2. Selected and discarded terms after tf*idf. Terms above the threshold (green) name a classifier
that uses this object as a training example; terms below the threshold (red) do not.

the future, it would be beneficial to experiment with more sophisticated, context-aware functions.

Important terms are then used as labels for visual classifiers (see Figure 3.2 for examples). Varying

this threshold affects the precision of the selection process.

For each term, all images that have been described using that term become positive examples

for training a classifier. From the original 19,947 words used to describe 72 objects, 230 words were

selected as tokens for classifier training. This process successfully screened out words that are used

frequently when people are asked to describe objects, but that have poor discriminative or semantic

power (such as “picture,” “look,” or “image”).

3.1.2 Finding Negative Examples for Concepts

Based on prior research, I built a world model in which both the words being used and

the concepts they describe are initially unknown. Once a set of images has been selected as

positive training examples, the next step is to find dissimilar objects in the corpus to serve as

negative examples. This presents a bootstrapping problem; counterexamples are critical to the

efficient learning of word meanings [51] for a new term, but no classifier has yet been trained to
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automatically select negative examples. However, semantic data are available in the descriptions of

objects, and I expect that the descriptions of similar objects would be semantically similar.

A PV model was used to find the semantic distance between descriptions in the vector

space, which can then be treated as reflective of the dissimilarity between objects in the world. All

descriptions of each object were concatenated into an unordered “document,” from which a PV was

generated. The cosine similarity of these PVs then served as a distance metric (Figure 3.3). From a

matrix of all cosine similarities, I chose objects with the most semantically dissimilar descriptions

as negative training data. The experimental results validated this approach.

Figure 3.3. Cosine similarity of the paragraph vectors of descriptive documents for a single banana in the
UMBC dataset vs. selected other objects. Each PV represents an individual object in the dataset.
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3.1.3 Classifier Learning

First, I selected terms for which to create classifiers, as described above. For this perceptual

learning problem, I use kernel descriptors extracted from RGB and RGB-D images of UMBC

dataset objects. To test the effectiveness of the approach, I used three different types of classifiers:

color, shape, and type of object.

3.2 Experimental Results

In this section, I present experiments that test each stage of the learning pipeline: selecting

semantically meaningful words, finding negative training data, and assessing the quality of the final

trained classifiers.

3.2.1 Selecting Terms

To evaluate the effectiveness of this approach for finding semantically meaningful words, I

compared the results to the ground truth provided by human annotators. All unique words in the data

set were assigned to two annotators to categorize them as “Visually meaningful” or “Not visually

Figure 3.4. Precision (blue) and recall (orange) of term selection as the tf*idf threshold is varied.
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Figure 3.5. Examples of AMT similarity results. Five participants selected which of the two choices was more
similar to a target object. In the first row, most users selected the green arch, whereas the second
row shows a less clear preference.

meaningful.”1 Figure 3.4 shows the fluctuation in precision and recall as the tf*idf threshold used

for term selection was adjusted. The proposed method provides promising results for determining

the significance of words for which to learn visual groundings.

Discussion: As presented, this method selects preferentially for precision, i.e., reliably returns

semantically meaningful terms at the cost of thoroughness. This is appropriate, as classifiers trained

on visually uninformative words will result in poor predictive power and can be screened later. The

purpose of term selection is to focus the learning effort on the most promising terms.

3.2.2 Negative Example Selection

One of the primary contributions of this study is a distance metric for perceptual training data

that is based entirely on a paired, novel language. Using the PV model addresses a major failure

in the simpler bag-of-words model, in that the PV model considers the ordering and semantics of

words, but also still allows vector space–based comparisons. I treated the cosine distance between

the PVs as an implicit distance in the grounding space (see Figure 3.3). Images of the most distant

objects could then be used as negative samples for training the visual classifier (see Figure 3.1 for

examples).
1For ease of annotation, the choice “error” was also provided, but only 27 words appeared to be an error.
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As the “similarity” of objects is highly contextual, the ground truth for this distance metric

is not clearly defined. I approximated the ground truth by using AMT infrastructure to ask people

to evaluate object similarity. Because asking for a complete ordering of objects in the dataset was

impractical, I tested a subset of cases, asking five annotators to decide which of the two objects

was most similar to another. I presented 360 comparisons of the 72 objects in the dataset to five

different evaluators for a total of 1800 comparisons. A simple majority of annotators agreed with

my similarity metric in 84% of cases. Figure 3.5 shows examples of the results.

Discussion: The PV model was generally able to select good negative samples from the corpus, as

evidenced by comparisons with human evaluators. Visual classifiers trained using these negative

samples outperformed the baseline classifiers trained using random sampling from the dataset.

A more complex evaluation of similarity with better-defined parameters might be appropriate in

the future; for example, some users never considered color when designating similarity, whereas

others clearly based their decisions on whether something was food or not. These are informed and

reasonable aspects of similarity, but do not always align with the visual classifier training problem.

3.2.3 End-to-End Quality of Trained Classifiers

The quality of the grounded language model, that is, the trained model of the relationship

between language and percepts, is a product of the association between the language tokens and the

trained visual classifiers. Ideally, attribute descriptions should be associated primarily with a single

classifier with good predictive power.

As a baseline, I compared the classification accuracy of the end-to-end system described in

this paper with a model that chooses random negative samples and all non-overlapping samples
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Figure 3.6. Performance of color classifiers for words (y-axis) versus the ground truth (x-axis). Only a small
subset of representative classifiers is shown, as one is created for each keyword in the corpus.
This confusion matrix shows the confidence of trained classifiers when run against objects of each
type; for example, the trained model for the word “yellow” classifies the first object as positive
with 93 % confidence but is only 20 % confident that the second object matches. Classifiers
associated with color words have strong predictive power, as does the color classifier associated
with the token “tomato.” In contrast, the visually uninformative word “building” was not strongly
associated with a classifier.

Figure 3.7. Performance of selected shape classifiers (x-axis) against objects (y-axis). The confusion between
rectangles and arches is a product of ambiguity present in the data, as the blocks usually described
as arch-shaped have a rectangular top. This confusion matrix shows the confidence of trained
classifiers when run against sample objects of each type.

from the dataset. I used the same dataset to evaluate my method, the random selection method,

and all other sampling methods. The evaluation was conducted using my corpus of images and

descriptions. Cross-validation was performed for testing. As described above, I trained the color,

shape, and object classifiers for all selected terms.

Color: The color classification results demonstrate good results for color labels (see Figure 3.6).

However, there was some overfitting resulting from the relatively small set of objects. For example,

objects were frequently described as being on a white background, leading to conflation in the
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Figure 3.8. Performance of selected object classifiers (x-axis) against objects (y-axis). This confusion matrix
shows the confidence of trained classifiers when run against sample objects of each type.

use of the word “white.” The “orange” and “red” classifiers overlapped, in part because users

described both tomatoes and carrots using both terms. In addition, polysemy had a negative impact,

for example because the term “orange” can refer to the color or the object. Underfitting played

a key role in the classification using the words “half” and “white,” as there were fewer than 100

descriptions using these labels, when other labels received an average of 300–450 descriptions. One

possible solution to the need for extensive annotation is the use of efficient active learning techniques.

Previous grounded language acquisition experiments that utilized active learning techniques [154]

have shown promising outcomes in reducing annotation efforts without compromising classification

accuracy.

Shape: Figure 3.7 shows the results of some selected shape classifiers. Training shape classifiers

on small RGB-D images was significantly more difficult than for color, in part because the shape of

an object can vary considerably when viewed from different angles. Although the shape classifiers

still performed well, the quality of the results was somewhat lower than for color. A few sources of

complications included the tendency of annotators to not describe the shape of common objects;

for example, cucumbers were frequently referred to as green, but never as cylindrical. In addition,

certain terms, such as “rectangular” were overused, which influenced their classification success.
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Figure 3.9. Average performance of color, shape, and object classifiers. Negative data were selected randomly
(gray), using all non-overlapping objects (red) and using my dissimilarity measure. Incorporating
meaningful negative examples improved performance in every category.

Object class: Object classifiers, which are intended to determine the class an object belongs to,

are trained using a combination of color and shape features. Although the object classification

demonstrated positive results with my dataset, this is partly due to the strong influence of color in

classification; both the toys and the food objects in my dataset tended to be primarily a single strong

color.

Overall: The proposed system convincingly outperformed two baseline models (see Figure 3.9),

one that randomly selected objects to serve as negative examples, and one that used all other

objects as negative examples, demonstrating that my method improves on the state of the art

for unsupervised grounded language acquisition. A classifier trained with all other samples as
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Figure 3.10. Average cross-validation performance of classifiers for words. In general, color classifiers (top
left) performed best, although the outlier, purple, reflected the color differences between the
objects described as purple (typically eggplants, red cabbage, and plums). Classifiers for object
types (bottom left and right) generally performed well. Shape classifiers (top right) performed
worst, resulting from the fact that people do not provide a shape description as often as they do
in the other classes.
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negative data performed well, whereas random sampling performed almost as well in most cases,

but represented a fairer comparison in terms of training time and resources.

The overall goal of this work is to allow agents to improve their ability to learn semantic

representations of their perceived environments, using natural language as the training signal.

Although not a complete metric, one way of considering whether this work makes progress toward

that goal is to verify that the most obvious terms for the intended ground truth have been identified

as having important semantic relevance, and assess how accurately the classifiers associated with

those terms perform on the complete dataset. Using this metric, I found that all of the ground truth

labels were discovered using this technique. The classifier performance is shown in Figure 3.10.

3.3 Discussion

Although a number of different approaches have explored how to acquire semantic representations of

perceptual data, the need for automated selection of learning targets and, especially, negative natural

language exemplars is a frequent concern throughout the literature. The results presented here

demonstrate that statistical tools from natural language can be applied to corpora of mixed language

and perceptual data, automatically identifying terms that should be considered as candidates for

learning groundings and automatically selecting negative examples for training classifiers. This

reduces the need for human supervision, allowing language-learning agents to learn end-to-end in

an unsupervised fashion, from collecting data to fully trained grounded language models.

An evaluation of this process for finding meaningful words and selecting negative examples

suggests that these approaches are effective. These results illustrate the performance and effec-

tiveness of the classification model by comparing it with two baseline models, one that randomly
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selects negative samples, and one that uses all non-positive examples as negatives. I used the

word-as-classifier approach because, although it is a simplification of the language problem, it

is an applicable starting point for the robotic language understanding task to be applied to noisy

perceptual data. This language model is preliminary, and I intend to extend this to a more seman-

tically driven and context-sensitive model in the future. I also hope to see this research used in

a conversational agent. In a conversation-based interaction, the system will have the opportunity

to explicitly ask for negative examples, which I hope will improve the results. The approach in

this chapter would then be useful in reducing the number of (possibly repetitive) questions and

enhancing the quality of the dialog.

In the subsequent chapters, I effectively use this negative sampling approach with a more

varied set of objects, additional classifiers, multi-color, multilingual, and more complex visual

classification tasks. The automatic selection of meaningful counterexamples for the perceived world

serves as a foundation for perceptual grounding in this dissertation’s remaining research works.

Although the selection of suitable input samples supports grounded learning, analyzing the

complexities involved in the visual and linguistic sensor information is necessary to select the

appropriate techniques to enhance the learning quality. In the next chapter, I demonstrate the use of

well-known statistical techniques to measure the variability and complexity of linguistic and visual

data to examine the complexities involved in language learning tasks.
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Chapter 4

Measuring Complexities in Perceptual and Multilingual Data

There has been significant recent research on grounded language learning [81, 198, 208, 225],

but little emphasis has been placed on understanding the complexities of the inputs involved.

Although having appropriate positive and negative samples is vital in language acquisition, knowing

the intricacies of the language further assists in designing suitable learning approaches. This chapter

presents methods for analyzing these complexities using statistical language- and image-processing

approaches. These methods illuminate the core, quantifiable statistical differences in how language

is used to describe different traits of objects and the visual representation of those objects. These

methods provide an additional analytical tool for research on perceptual language learning.

Previous studies on language grounding [153, 89] have demonstrated that the amount of data

required to learn about different traits of an item, such as its color, shape, or overall object type,

varies significantly. There has been speculation that the “complexity,” broadly defined, of the trait

being linguistically described (or visually represented) is a key correlate to this varied performance.

This is generally intuitive, although the lack of a clear quantitative measure limits the conclusions

that can be drawn. Therefore, it is important to measure the complexities of learning tasks to find

suitable techniques for improving language learning performance.

My primary contributions are: (1) the introduction of “trait-based” complexity to the AI and

grounded language learning communities, and (2) the identification of appropriate metrics and

statistical tools to measure the complexity of perceptual data and linguistic variability as a means of
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predicting efficiency in grounded language learning. Language is measured using sentence-based

entropy analysis and visual complexity is measured by examining visual features. I argue that this

straightforward approach is beneficial, since it is simple to compute yet effective at discerning key

differences in grounded language. I further argue that the complexity measures provide grounded

language learning researchers with an additional tool for analyzing and understanding their data

and underlying learning problems.

4.1 Approach: Measuring Complexity

Although perceptual and linguistic complexity are intuitive concepts for many people, they are

difficult to verbalize or define. In general, humans are poor at providing numerical priors or rankings

of subtle concepts, particularly over a very large dataset [7]. This study attempts to clarify the

concept of visual and linguistic complexity individually. Accordingly, I introduce automated metrics

here. Note that in identifying these metrics, I do not claim that they are the only possible metrics.

Indeed, I argue that these complexity measures provide grounded language learning researchers

with an additional tool for analyzing and understanding their data and underlying learning problems,

and augment the tools already used in this domain of research. I hope that my work will encourage

the community to begin examining these notions of complexity in their other efforts and across

other grounded language tasks. Approximating the combined visual–linguistic complexity would

be an exciting topic for future research.

Linguistic Complexity: This work calculates the linguistic complexity by computing lexical en-

tropy, extracted for each concept from the descriptions. For every object instance i, I combined all the

descriptions into a pseudo-document di. I calculated the frequency for every descriptive concept v in
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di as pi,v / count(v 2 di). I then computed the entropy hi of the instance i: hi = �
P

u pi,u log pi,u.

Descriptions and entropies can be separated at the pseudo-document level depending on whether

a characteristic word, e.g., “red,” was used or not. As entropy reflects the diversity of language

used to describe an instance, examining its variability helps explain the linguistic complexity of a

trait. Although straightforward, this approach is consistent with the traditional concepts-as-classifier

grounding approach used in previous work [173, 195, 1]. I then calculated the density estimates

of entropy for the distribution of language describing a trait such as color vs. the distribution of

language that does not describe that trait. Descriptions of one instance may include concepts of

all three traits (e.g., “a round, purple eggplant”). I then calculated the linguistic complexity of

a trait by combining the entropies of descriptions that referenced a concept associated with that

trait. I compared them with the cumulative entropy calculated from all other concepts that were

not related to that trait. For example, I combined all the descriptions of eggplant instances and

calculated the entropy using every concept count. For color, I selected all the concepts associated

with color (e.g., “purple”), and added the entropies of all the instances described by that concept. To

calculate the distribution of non-color traits, I added all entropies that were not related to color. I

categorized the concepts corresponding to each trait using Google Translate [209].1 I performed

a Kolmogorov–Smirnov (K-S) test to quantify these distributions. K-S tests are an efficient way

of comparing two distributions (or samples from unknown distributions) with the null hypothesis

that they do not differ. The K-S test returns the maximum distance D between the two curves, with

D bounded by 0 (for identical distributions) and 1. The results are shown in Tab. 4.1. Although

measures such as the KL and Jensen–Shannon divergence quantify the “difference” between two

distributions, I use the K-S test because it not only provides a similar “difference” score, but also
1Available with code at https://github.com/iral-lab/MultiModalComplexityEval.
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Dataset Language D, Color D, Shape D, Object
Concepts Concepts Concepts

UMBC
English 0.41 (1.63E-7) 0.28 (1.163E-3) 0.36 (9.0E-6)
Spanish 0.58 (1.3E-14) 0.23 (1.3E-2) 0.39 (9.9E-7)
Hindi 0.48 (5.4E-10) 0.41 (2.0E-7) 0.58 (2.8E-14)

UW English 0.20 (2.2E-16) 0.56 (2.2E-16) 0.56 (2.2E-16)

Table 4.1. Kolmogorov–Smirnov test results for each dataset and language, comparing trait vs. not-trait.
D represents the maximum distance between the two samples’ empirical CDF, i.e., the trait and
non-trait cumulative distributions. All results are significant to at least p=0.013, with p-values
provided in parentheses. This table shows that the UMBC dataset has fairly consistent color
descriptions (larger K-S distances), but the UW-RGBD dataset, which contains more complex,
multicolored objects, is less consistent (smaller K-S distances). The K-S distances for shape and
object traits are smaller, indicating complex, varied descriptions.

provides an efficient way to reject a null hypothesis (that the two distributions do not differ).

Visual Complexity: I used the methods proposed and validated against the results of users

reported by Machado et al. [124] to estimate the complexity and variability of visual traits, using

edge density features and compression errors. I considered different categories in concept-specific

ways. For color, the approach was simple: I used the empirically validated approach of computing

the standard deviation of raw RGB values. To measure the shape complexity, I computed the

compression loss of the detected edges. I extracted HSV values from the RGB images, computed

edge densities over these using standard edge detection algorithms ([28, 87]), and estimated the

compression errors using JPEG compression (see Fig. 4.2). Machado et al. [124] presented user

studies that validated this approach; other compression techniques would need to be validated in a

similar fashion, which is an effort deserving of a dedicated study.2

Previous work that predicted trait-based concepts used a combination of color and shape

features to predict the object trait [153, 89], so I do not directly address the visual complexity

of object types. To meaningfully analyze object type as distinct from color and shape, I would
2Canny edge detection coupled with JPEG compression provides one of the highest correlations between human
and computational estimates of visual complexity. This implies that edge density and compression error are reliable
predictors of people’s perception of visual complexity.
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Dataset Lang. Color Shape Object Type

UMBC
English Concise, less varied concept

vocabulary

Contrasting description;
83.3 % instances were
described with shape

concepts

Varied and diverse
description; all instances are

described with object
concepts

Spanish Concise and less varied
concepts

Various concepts of similar
meaning; all instances are

described with shape
concepts at least once

Varied and diverse
description; all instances are

described with object
concepts

Hindi
Semantically similar, but
gender-based inflectional

differences present

Highly varied and diverse
concepts; all instances are

described with shape
concepts

Varied and diverse
description; all instances are

described with object
concepts

UW English

Multicolor objects, medium
consistency in description;
Not all descriptions have

color concepts

Various concepts of similar
meaning; only 9.5% of all

instances have shape
concepts in their description

at least once

Varied and diverse
description; 98.9% of
instances have object

concepts in description

Table 4.2. A qualitative summary of typical complexity of sentences describing images, separated out by
datasets (UMBC vs. UW RGB-D).

need to consider a different featurization that captures more of the semantics of “object-ness,”

which remains a topic for future work. Nevertheless, I expect my approach to generalize to other

language-grounding problems that are currently of significant interest to the field [65, 6]. I focused

on RGB-D data, but variations of my measures apply to most data with a visual component, and the

language analyses will be directly applicable.

4.2 Analysis: Linguistic Complexity

English: I considered both the UMBC and UW datasets for linguistic complexity evaluations in

English. Fig. 4.1 shows the density computed from the entropies of the UMBC and UW datasets

(results are broadly consistent between them). The variability of the traits can be seen in the entropy

results in the figure. We can see that color entropies are concentrated toward “zero” compared to

non-color entropies, indicating the concise, less diverse vocabulary used to describe “color.” For

example, the concept BLUE is described using exactly the term “blue” in 95% of the descriptions.

Non-color entropies were more diverse, indicating the variance in the descriptions using these
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Figure 4.1. Comparison of traits “Color,” “Shape,” and “Object” via lexical entropy for the UMBC and
UW RGB-D+ datasets. The K-S statistics quantify the divergence within each facet (subplot).
Note that the entropy for color concepts is lower than for non-color concepts, indicating the
concise, less varied vocabulary used to describe colors. The object trait entropy was higher,
indicating linguistic variability. Only 9.5% of the UW dataset instances had shape concepts in
the description at least once. Spanish descriptions contained varied but semantically similar
shape/object tokens in their vocabulary.

concepts, and demonstrating that “color” was linguistically simpler in these datasets than other

traits. “Shape” was the most varied trait, with high variance in the annotations, both according to

my metrics and in practice. “Object” annotations were more consistent than “shape,” as users were

mostly consistent in describing vegetables (e.g., “corn,” “cabbage”) but less consistent in annotating

children’s toys (e.g., “arch,” “cube”).

There were differences between datasets. In the UW dataset, not every instance was described

with a color, which is reflected in the lower K-S distances. “Object” descriptions in the UW dataset

were also more diverse compared to the UMBC dataset. The atypical “shape” behavior indicates the

lack of “shape” words in the description. Additional analysis revealed that only 9.5% of instance

descriptions had shape descriptors.
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Hindi: Figure 4.1 shows the densities calculated from the UMBC Hindi dataset. Color complexity

(i.e., diversity of language describing color) was much smaller than that of shape and object. From

the annotations, I found that different forms of the same words were used to describe the object:

For example, the “color” concepts were semantically similar but exhibited noun inflection based

on gender. Such discrepancies affect language acquisition performance. Diverse words are used

for shapes, particularly to describe cylindrical objects, making the downstream language learning

problem more complex. A high entropy implies a weak agreement between the annotators. The trait

complexity patterns in Hindi are nonetheless approximately analogous to those in English.

Spanish: The diversity of terms used in Spanish across the three traits was similar to that of

English and Hindi; language about colors was consistent and straightforward, but became more

complex for shape and object. Figure 4.1 shows the densities calculated for the UMBC Spanish data.

“Color” showed the least variation of the three traits, although there was more variance in color

descriptions for concepts with similar meanings, such as the very similar terms morado, púrpura,

and violeta for purple.

The vocabulary used for shape features varied and was inconsistent. Of the words rectangulo,

poliedro, and paralelepı́pedo, all appeared when describing rectangular solids. Similarly, object

terms varied widely, possibly due to a difference in which objects are routinely found and discussed

in day-to-day life. For example, a cucumber was described as a pepino (cucumber) and a pepinillo

(pickle), but also several times as “looking like a small sandı́a (watermelon),” as well as by the

category hypernyms vegetal, and fruta (vegetable and fruit).

Overall, the relative linguistic complexity of traits was comparable to that of English and

Hindi. Therefore, all three languages have a consistent and straightforward vocabulary for the “color”
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Figure 4.2. Visual complexity of “color” & “shape” for both datasets. Lower standard deviations are a good
indication of greater visual color consistency. The left-skew of the compression errors illustrates
the high variations of the “shape” concept.

Dataset Language Color Shape Object
Yes No Yes No Yes No

UMBC
English 0.71 1.45 1.20 1.18 1.67 0.95
Spanish 1.17 2.23 2.07 1.78 2.38 1.63
Hindi 1.09 1.61 0.95 1.68 2.27 1.03

UW RGB-D+ English 0.39 0.58 0.01 0.71 1.03 0.22

Table 4.3. The average of the linguistic complexity comparisons between trait vs. non-trait for each dataset
and language. Higher differences between average values indicate conciseness in the description;
color descriptions were more concise than shape and object descriptions.

concept, but a varied and complex vocabulary for “shape” and “object” concepts.

4.3 Analysis: Visual Complexity

In modeling visual complexity, I considered shape and color differences between the two

datasets, omitting object type for the reasons described above. The results are shown in Fig. 4.2.

In the smaller UMBC dataset, the standard deviations of the RGB values were a good

indication of greater visual consistency, whereas lower compression rates were a good indication of

reduced complexity. From these results, I can conclude that the overall color deviation was small,

which is accurate for the dataset being measured. The compression rates of the shape concepts were

more varied, which is indicative of greater visual variety.

In the UW dataset, the results were similar. Although there were subtle differences, the overall
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Dataset Color Shape
UMBC 0.120 0.910

UW RGB-D+ 0.171 0.942

Table 4.4. The average value of the visual complexity measures of color and shape distributions for each
dataset. The smaller mean for my color complexity metric indicates a lack of variety in color
features, whereas larger values for shape complexity are a result of the complicated edges and
shapes in the feature set.

complexity profiles between the two datasets were similar, with perhaps slight diversity in the UW

dataset color standard deviation, presumably due to the fewer monochromatic objects in this dataset.

Previous chapter reported large performance drops in classification surrounding “color” con-

cepts vs. “shape”-based concepts [153], wherein “color” yielded an accuracy of 0.81, but “shape”

was much lower at an accuracy of 0.62. This roughly tracks with this complexity measure; both

linguistic and visual complexity measures for the “color” trait are lower (indicating lower complex-

ity, and more successful classification), whereas the complexity measures for the “shape” trait are

higher (indicating higher complexity, more complicated descriptions/visuals, and more difficult

classification). Additionally, I found that the level of ambiguity in learning varies with multi-sense

concepts in the context of dealing with concrete objects. For example, “orange” is both a color and

an object. Learning the meaning of “orange” as a color is simpler than “orange” as an object, and

the complexity measures reflect this difference.

4.4 Discussion

In this work, I analyzed multilingual grounded language data modalities and presented models

that allow automated analysis of the complexity of descriptions and visual inputs. I verified that

there is a consistent, statistically verifiable pattern of complexity across the traits I considered,

making it possible to consider differentiated learning approaches in future cross-modal grounding
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tasks. I anticipate that this will help grounded language learning researchers better understand the

data they are working with and therefore yield and aid improved design decisions, such as more

appropriate feature selection and classification models.

In this dissertation, the first two chapters concentrated on building and analyzing the nec-

essary building blocks in perceptual learning. However, a thorough exploration of techniques to

enhance learning performance is still required. Identifying appropriate technologies to optimize

and generalize language grounding from complex language signals with fewer annotations is a

significant contribution. The following two chapters further explore effective ways to optimize

semantic language models for interactive robots.

In this chapter, I have demonstrated the efficacy of my approaches to quantify the variability

and complexity of three characteristics of real-world objects. In the next chapter, I present the

methods that are suitable for improving data efficiency from fewer annotations in learning these

characteristics.
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Chapter 5

Active Learning for Enhanced Grounded Language Acquisition

Learning unconstrained language paired with sensor and actuator data about novel object

attributes (e.g., attributes that have no representation in the underlying language model until

encountered) [127, 128] is a critical task for social systems. Chapter 3 demonstrated an approach

for finding essential negative percepts for learning the language models, and Chapter 4 provided

appropriate techniques for calibrating the complexities present in the learning problem. All these

methods are useful in designing visual–linguistic learning models. However, to accomplish the

longer-term goal of learning groundings for descriptions of objects from end-users, it is necessary

to reduce the amount of annotation needed to learn about these objects. In this Chapter, I present an

exploration of machine learning methods to improve the efficiency of grounded language learning

with fewer annotations.

Machine learning of grounded language often demands large-scale natural language anno-

tations of things in the world, which can be expensive and impractical to obtain. It is not feasible

to build a dataset that encompasses every object and its possible linguistic descriptions. Novel

environments require symbol grounding to occur in real time, based on inputs from a human inter-

actor. In this work, I present an exploration of active learning approaches applied to three grounded

language problems of varying complexity to analyze which methods are suitable for improving data

efficiency in learning. In addition, I report on how characteristics of the underlying task, along with

design decisions, such as feature selection and classification models, drive the results. I observe that
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representativeness, along with diversity, is crucial in selecting data samples.

5.1 Fewer Descriptions and Better Learning

Learning the meanings of language from unstructured communication with people is an

attractive approach, but it requires fast, accurate learning of new concepts, as people are unlikely to

spend hours manually annotating even a few hundred samples, let alone the thousands or millions

commonly required for machine learning. In this work, I study active learning, in which a system

deliberately seeks information that will lead to improved understanding with less data, to minimize

the number of samples/human interactions required. The field of active learning typically assumes

that a pool of unlabeled samples is available, and the model can request specific examples for which

it would like to obtain a label. By having the model select the most informative data points for

labeling, the number of samples that need to be labeled is reduced. This aligns with the goal of

human–robot learning for minimal training data to be provided by humans. Furthermore, active

learning can be incorporated as part of a pipeline with other few-shot learning methods [58].

However, active learning is not a magic bullet. When not carefully applied, active learning

does not outperform sequential or random sampling baselines [163]. A thorough selection of

suitable approaches for these problems is required. While active learning has been used for language

grounding [154, 8, 148], I present the first broad exploration of the best methods for active

learning for grounding vision–language pairs. In this chapter, I focus on developing guidelines

by which active learning methods might be appropriately selected and applied to vision–language

grounding problems. I test different active learning approaches on grounded language problems of

varying linguistic and sensory complexity, and use the results to drive a discussion of how to select
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active learning methods for different grounded language data acquisition problems in an informed

manner.

Here I consider the grounded language task of learning novel language about previously

unseen object types and characteristics. My emphasis is on determining which methods can

reduce the amount of training data required to achieve performance that is consistent with human

evaluation. Primarily, I address five relevant questions concerning characteristic-based grounded

language learning: (1) How much do active learning techniques help when learning with limited

data? (2) Do different active learning techniques, e.g., pool-based vs. uncertainty-based approaches,

lead to noticeable differences in performance? (3) Are the methods robust across both neural and

non-neural features and classifiers? (4) How important are the characteristics of the dataset? (5) How

much does incorporating some seed language affect the performance? I make conclusions with

respect to these questions in §5.3. In addition to addressing the above research questions, I verify

how generalizable these learning techniques are beyond characteristic-based grounding.

I found that a correct ordering of training data makes it possible to successfully learn from

significantly fewer descriptions than other models for most cases, but also that the active learning

methodology chosen is specific to the nature of the learning problem. My main contribution is

a principled analysis of using active learning methods as unsupervised data sampling tech-

niques in language grounding, with a discussion of what aspects of those problems are relevant

to approach selection. Although my contributions are primarily analytic rather than algorithmic, I

argue that they address a critical need in language understanding, a research area in which questions

of efficiency and data collection are widespread.
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5.2 Approach

For different active learning methods, I trained associations between RGB-D images (color

+ depth) of objects in a dataset and the language that describes them (Sec. 2.1). I note that the

evaluations performed in this work are intended to compare the success of different active learning

approaches for the same problem.

I limited the training data to a single description of each object to mimic the limited training

available from human interactions. To perform replicable experiments, I used active learning

approaches in which objects (and associated training and evaluation information, such as descriptions

and identified concepts) were drawn from a pre-existing pool of data, rather than obtained de novo

through human interaction. In my primary experiments, I varied the active learning approach used

to select new descriptions of objects to add to the training pool. In addition, I experimented with

different features and classification techniques. Because my problem focuses on choosing objects to

obtain labels for, this is consistent with the task of asking a person to describe a particular object,

but also allows me to perform larger-scale and more replicable experiments. My goal was to explore

data selection decisions in limited settings to improve performance at the early stages of learning.

The goal was thus not to improve absolute learning performance, as using a novel or complex

approach runs the risk of introducing poorly understood confounding factors.

5.2.1 Learning Concept Classifiers

Similar to previous tasks, I learn the associations between perceptual inputs and descriptive

concepts to test active learning approaches. Once perceptual features were extracted from the

images, a visual classifier for each characteristic was learned. These classifiers were trained using
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every image that had been described using the concept and selected by an active learning method.

Given an instance xi and a characteristic-specific perceptual representation ⌘TRAIT(xi), I trained

characteristic-specific probabilistic binary classifiers for each concept, pTRAIT(wconcept | ⌘TRAIT(xi)),

where wconcept 2 {0, 1} represents the probability of xi’s characteristic TRAIT being described as

concept. Note that this problem is two-fold: the system must learn how to both describe objects

properly, and how to avoid characterizing objects in a way that does not make sense. I used

LR as my primary classifier type pTRAIT (see §5.4.4 for the impact of this decision) and extract

characteristic-specific features ⌘TRAIT.

5.2.2 Core Sampling Methods

Intuitively, I wanted my algorithms to preferentially select the most informative and diverse

objects for labeling from the pool of unlabeled objects. Driven by both long-standing and recent

findings in active learning [42, 61, 175, 206], I used probabilistic clustering, and point process

modeling in particular, as active learning strategies. Because the data are inherently noisy, I found in

my early experiments that variations in GMMs and DPPs were robust selection algorithms. GMMs

accommodate mixed membership, and soft cluster assignments allows one to model uncertainty.

Parametric methods were selected as my learning techniques, as they are statistically stable [149]

compared to nonparametric models. Therefore, I focus on GMM- and DPP-based approaches,

applied to visually grounded object features, to select the most informative points from a set of

unlabeled instances.

As I focused on learning from limited data, I did not consider deep learning approaches,

which generally operate best over large datasets. Across all of my experiments, I examined five
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different active learning models: three pool-based methods (GMM Max Log Density Based, VL-

GMM,1 and DPP) and one uncertainty-based (GMM log density) method. I introduced a structured

DPP (GMM-DPP)-based active learning technique, which is a novel approach for the grounded

language problem. I compared these variants of active learning strategies with a random sampling

baseline across the three characteristics (color, shape, and object). Although the initial experiments

considered entropy-based sampling methods (computed by my GMM’s posterior entropy), they

were found to perform substantially worse than those listed, and subsequent experiments did not

include them. For all GMM approaches, I selected the number of components C empirically using

four-fold cross-validation. In GMM-based methods, I compared the test performance with the

number of components ranging from 5 to 35, and received the best results with 15 components.

In GMM-based pool sampling experiments, I clustered instances using their informativeness and

ranked the instances according to their learned conditional densities.

My methods selected instances that are informative and diverse by querying from all N

items at once. This is also called querying in “batch mode,” and has been applied successfully in

prior research [171, 31]. I drew from an existing pool of human-provided descriptions, rather than

explicitly seeking new labels via interactions, to enable broader and more repeatable experiments.

Max Log-Density-Based GMM Sampling: This model uses a C-component GMM to cluster

unique image features and rank them according to their maximum multivariate densities from the

unlabeled data pool. Those with greater density are selected as they are potentially more informative.

I used 15 Gaussian components (selected empirically as a hyperparameter), initialized the mixing

weights and Gaussian parameters using k-means, and fit the GMM with the standard expectation
1VL-GMM is included to show the difference between vision-only vs. vision–language clustering-based learning, and
so does not occur in other reported results.
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maximization algorithm to learn the parameters.

DPP Sampling: DPPs have proven to be effective in modeling diversity [62]. I used DPPs as a

technique to find the most representative and diverse data points from the pool of data instances. This

method uses the pool of all unlabeled image samples to find the most diverse data points by using a

radial basis function (RBF) kernel with carefully selected parameters. In this setting, DPPs define a

discrete probability distribution of all subsets of the image data samples. If X is the random variable

for selecting a subset of images X from a larger set X , then P (X = X) = det(K(0)
X )/det(K(0)

X +I),

where I represents the identity matrix. Applied to all pairwise elements of X , the kernel K(0)
X is a

positive semi-definite matrix, where the (i, j) element of the matrix is the value of the kernel applied

to items xi and xj . I used the RBF kernel, K(0)(xi, xj) = exp (�hkxi � xjk22), by cross-validating

with h 2 {100, 25, 4}.

GMM-DPP: I combined the DPP kernel with the GMM marginal probability derived from the

image samples to rank input samples based on diversity. Following Kulesza and Taskar [104] and

Affandi et al. [2], I combined a DPP kernel K(0)(xi, xj) defined on images xi and xj with individual

“quality” scores for each image. I used PGMM(x), the marginal probability of image x according to

the GMM, as the quality scores, and defined a new kernel as:

K
(1)(xi, xj) = PGMM(xi)K

(0)(xi, xj)PGMM(xj)

The marginal probability modulates the diversity of the data. It allows a separate model, with its own

assumptions, to help designate which data is and is not diverse. To the best of my knowledge, this

is a novel kernel for grounded language learning. Similar to the GMM-based sampling approach,

I used 15 Gaussian components in the GMMs and initialized the mixing weights and Gaussian
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parameters using k-means.

5.3 Experimental Setup

I estimated the quality of grounded language acquisition using the predictive power of learned

concept classifiers against test objects. In Tab. 5.1 I calculated the area under the curve (AUC)

from the F1-score performance of the concept classifiers. My baseline randomly selected images to

train visual classifiers, whereas active learning approaches sample data points as described above.

This is meant to mimic the performance of a robot asking random questions about objects in the

environment.

The baseline and active learning methods only observe concept words from a single-text

description for each image. Images that were described by these words were selected as positive

instances. Similarity metrics were used to find negative examples of these words [155]. All results

were averaged over 4–12 runs for each characteristic: object, shape, and color. I selected hyperpa-

rameters, such as the number of components of my GMM model, empirically via cross-validation. I

also empirically selected the query size for each experiment.

5.4 Results and Per-Characteristic Analysis

The overall performance of each approach during the language learning task is shown in

Tab. 5.1, divided into the three characteristic learning problems addressed: color, shape, and object.
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Sampling Color Shape Object

Baseline: Random 0.75 0.19 0.49
Max-Log-Density-Based GMM Pool 0.82 0.25 0.62
DPP Sampling 0.8 0.22 0.59
GMM - DPP Sampling 0.78 0.27 0.58

Table 5.1. AUC summaries for each method’s F1 performance, grouped by the characteristic learned. All Ac-
tive Learning (AL) techniques performed better in characteristic grounding by selecting significant
points from the pool.

5.4.1 In-Depth Analysis of Active Learning Performance

The effect of active learning techniques in grounded characteristics learning was measured by

comparing the three pool-based active learning techniques described previously, with the random

sampling baseline for color, shape, and object characteristics (Tab. 5.1). Below, I will present an

analysis of the results with respect to color, shape, and object grounding.

Color COLOR is the simplest of the three categories of characteristics learned. This observation

is, in part, a result of the dataset, in which the objects were primarily all of one color, but color

learning is also a simpler vision problem overall. As such, there was little variation in the color

descriptions provided. Most annotators used simple color names (e.g., “red”) rather than the full

range of available English terms (e.g., “crimson”). However, occasional noisy annotations such as

a carrot being described as “purple” and “rose” made the learning problem more difficult. Here,

RGB features extracted from the segmented objects define the ⌘COLOR and were shared across all

approaches.

All active learning techniques outperformed a random baseline in learning the groundings for

color concepts. When neither visual percepts nor descriptive language varies widely, the primary

consideration is to choose representative data quickly. DPP-based sampling methods, which by

design select diverse points, also learn effective classifiers with limited data.
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Shape The second category of results, SHAPE, is the most visually complex, and contains the most

extreme linguistic difficulty due to the limited set of annotations. Training shape classifiers is a

comparatively complex problem, as the shape of an object varies with the viewing angle. A wider

variety of words were used to describe shapes; however, unlike describing colors, users tended to

not explicitly specify object shapes. For example, when asked to describe a lemon, most people

responded with “yellow,” but relatively few responded with “round.” Kernel descriptors of the

segmented object define ⌘SHAPE and were shared across all approaches.

The random sampling baseline was affected by the lack of shape tokens in the description,

requiring nearly 30 descriptions to learn the first few shape words. The GMM-based DPP showed a

noticeable improvement in the speed of learning and also, on inspection, found distinct shape words

faster than did the random sampling approach. All active learning approaches that found diverse

points at earlier stages also outperformed the random baseline.

Object Type The next challenging grounding task considered in this work was the OBJECT:

learning language that describes membership in an object class, that is, object recognition. To

train object classifiers, I extracted both RGB and kernel descriptors [18], which define the ⌘OBJECT,

meaning that object recognition was treated approximately as a superset of color and shape learning.

The performance of the Max-Log-Density-Based GMM Pool sampling approach was signifi-

cantly better than that of the random baseline. I believe this result is because the number of classes

for objects was larger (and membership is therefore sparser) than for color and shape characteristics,

reflecting the complexity of real-world sensor data. This sparsity made careful selection of samples

particularly critical.
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Sampling Color Shape Object

Baseline: Random 0.75 0.19 0.49
Max-Log-Density-Based GMM Pool 0.82 0.25 0.62
Log Density Based GMM Uncertainty 0.83 0.23 0.44

Table 5.2. AUC summaries of F1 performance for Pool and Uncertainty sampling performance, grouped by
the characteristic learned. Uncertainty sampling (which depends on feature variability) does not
perform well in object grounding, which has a noisy, highly varied data pool.

5.4.2 Pool vs. Uncertainty-Based Active Learning Methods

Uncertainty sampling methods use learned probability models to measure the uncertainty in

unlabeled data points. Log-Density-Based GMM Uncertainty Sampling: uses a learned GMM to

select outliers. I selected these by finding the images that had the lowest log-density of any GMM

component. I aimed to select the most uncertain data points to obtain a diverse dataset.

Max-log-density-based GMM pool-based sampling (Tab. 5.2) selects representative data

points from the unlabeled pool of objects, whereas uncertainty sampling selects diverse points by

considering outliers as useful points. This selection depends on the variability of the features. For

learning color and shape concepts, both pool- and uncertainty-based sampling performed better

than the baseline. However, while learning object types, uncertainty sampling could not obtain the

required concepts from the most varied visual set and the limited annotation dataset.

I hypothesize that the deterioration of uncertainty pooling on the object task relates to the

nature of the information’s utility in an active learning context. As more information and descriptors

become available in the object scenario, it becomes easier for outliers to occur; points with unusual

shapes and color combinations that are not well described will increase model uncertainty. Obtaining

a label for an outlier may have limited utility for future data because of the inherent quality of being

an outlier; its behavior is inconsistent with the rest of the data. This may make uncertainty-based

approaches less attractive as more complex grounded language datasets become available, or it may
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Sampling CNN KernelDesc

Baseline: Random 0.53 0.49
Max-Log-Density-Based GMM Pool 0.66 0.62
DPP Sampling 0.55 0.59
GMM - DPP Sampling 0.49 0.58

Table 5.3. AUC summary results for each visual feature’s F1 performance for “object” characteristics.
The DPP and GMM pools consistently outperform the baseline for both types of visual features
(non-neural kernel descriptors and CNN features).

indicate a need for refinement to uncertainty-based approaches.

5.4.3 The Impact of Visual Features

Convolutional neural network (CNN) features have been shown to be effective in learning

characteristic types [210]. In this section, I examine the robustness of my active learning methods

across both neural and non-neural features. In contrast to the “kernel descriptors” (the RGB

and HMP features used in the previous section), I extracted 1024-dimensional features from the

Neural Architecture Search Network (NASNetLarge), which was pretrained on ImageNet. The

NASNetLarge features are henceforth referred to as the “CNN” features in this section.

Table 5.3 shows that, similar to grounded learning with kernel descriptors, most of the active

learning techniques outperformed the random baseline on CNN features. DPP and max-log-density-

based GMM pool active learning techniques could select diverse and representative points at earlier

stages than could the random baseline. The characteristic learning example above shows that

active learning was effective in selecting meaningful and diverse points faster, irrespective of the

underlying visual features. These results also demonstrate that in a low-data setting, using a CNN

over kernel descriptors without first considering the specific method of active learning can lead to

inferior results. Using CNN features with both DPP sampling approaches yields a lower AUC than
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Sampling LR SVM MLP

Baseline: Random 0.75 0.72 0.62
Max-Log-Density-Based GMM Pool 0.82 0.66 0.54
DPP Sampling 0.8 0.66 0.6
GMM - DPP Sampling 0.78 0.63 0.5

Table 5.4. AUC summary results for each classifier’s F1 performance for “color” characteristics. Logistic
regression can effectively classify types with diverse and meaningful points.

does kernel descriptors. Although the max-log-density approach dominated in this setting, these

results showcase why the study of the impact of features in combination with active learning is

important.

5.4.4 Analysis with Different Classifiers

In this section, I revisit my choice to use an LR classifier for pTRAIT(wconcept | ⌘TRAIT(xi)),

and examine how robust the active learning methods were across different classifiers ( Tab. 5.4). I

consider a support vector machine (SVM) and a multilayer perception (MLP). SVMs are well-known

linear models that find the maximum-margin hyperplane, which distinctly classifies data samples.

An MLP, alternatively, is a feedforward artificial neural network that uses nonlinear activation

functions. Both have been widely used for classification purposes.

In this experiment, I examined the “color” characteristic learned using the three classifiers

(LR, SVM, and MLP). In Tab. 5.4 I demonstrate that, across active learning methods, LR classifiers

were better able to classify colors than could the random sampling baseline. In contrast, neither

the SVM nor the MLP resulted in effective classification models when paired with active learning

approaches. These results suggest that complex classification methods may not yield improved

performance and show the need to jointly consider the selection of active sampling methods and

downstream classifiers.
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Sampling UMBC UW RGBD+

Baseline: Random 0.75 0.53
Max-Log-Density-Based GMM Pool 0.82 0.58
DPP Sampling 0.8 0.51
GMM - DPP Sampling 0.78 0.64

Table 5.5. AUC summary results for each dataset’s F1 performance for COLOR. The GMM pool and GMM-
DPP were able to consistently outperform the baseline, even with a multi-colored UW RGBD+
dataset.

5.4.5 Analysis with Different Datasets

In this section I examine if my techniques were effective for a large dataset (Tab. 5.5) that is

visually and linguistically noisy and diverse. In addition to the limited features dataset, I tested the

active learning techniques over a 300-object UW RGDB+ multi-colored dataset (Tab. 5.5), for just

“color” characteristics due to space constraints. It contained 51 objects and 1500 annotations (Sec.

2.1). In the UW RGBD+ dataset, not every description contains color information. Additionally,

the words used to describe the color concepts are inconsistent. Because the dataset contains fewer

monochromatic objects, the visual variation is also high, making vision–language grounding a

challenging task. Even in these experiments, most of the learning techniques that selected diverse

and representative points were able to perform better than a random baseline. The DPP failed to

rank in order of importance when linguistic and visual data were inconsistent. Taken together,

these results indicate that my active learning techniques are generalizable and equally beneficial to

datasets on different scales.

5.4.6 The Impact of Seed Language

Thus far in my analyses, my proposed methods have selected images without considering the

concepts that the objects represented. In this section, I revisit that restriction and examine whether
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active learning methods can benefit from considering both the image and language description

together. To achieve this, I defined a joint vision–language pool-based model that uses a combination

of language informativeness and visual features to select sample points from the data pool. I refer

to this method as VL-GMM sampling . I used PVs [109] to semantically represent a language

description associated with the image data point in the vector space. I used C-component GMMs

to cluster the feature vectors (combined image features and PVs) and rank them. I considered the

features that were closest to the center of the cluster points to be the most informative data points

and selected them for training.

Sampling Color Shape Object

Baseline: Random 0.75 0.19 0.49
Max-Log-Density-Based GMM Pool 0.82 0.25 0.62
VL-GMM Sampling 0.8 0.22 0.57

Table 5.6. AUC summaries for each method’s F1 performance, grouped by the characteristic learned. Both
AL techniques performed better in characteristic grounding by selecting significant points from the
pool.

VL-GMM sampling (Tab. 5.6) outperformed a random baseline in learning groundings for

color, shape, and object concepts, selecting the most diverse and informative data points at the

earlier stages. VL-GMM consistently exhibited better performance, which makes intuitive sense, as

this method uses language in addition to image characteristics to select training data, and therefore

has more information on which to decide. While learning object types, VL-GMM selected only

informative points at the initial stages, and the initial performance was comparable to the baseline.

After 50 data samples, diverse and representative data samples were found, which ultimately

outperformed all other sampling strategies.
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Figure 5.1. Performance of visual classifiers for Object type as the learning progressed with varying data
sizes. In total, 216 distinct object images and their annotations were used in training. The F1-score
is shown on the y-axis, and the number of data samples is shown on the x-axis. The VL-GMM
approach showed promising performance for more complex shape and object classification
problems. However, the addition of noisy, highly varied descriptions during training affected the
consistency in classification. Linguistic variability within the description caused the VL-GMM
performance to oscillate as it learned the language during training.

5.4.7 Performance with Varying Data Size

In this experiment (Fig. 5.1), I attempted to mimic real-world human–robot learning that

used noisy, inconsistent, and limited data resources. For training, I used 216 distinct depth images

and each image’s description for training. The remaining 72 images were used for testing. The

descriptions were highly noisy and varied. Most of these methods did not provide shape or object

information. My objective here was to understand how the active learning methods performed

across varying amounts of available training data. Owing to space constraints, and to examine the

performance of my methods under a “harder” setting wherein concepts are not frequently described,

I display the results for “object” classification in Fig. 5.1. With highly varied and noisy features,

all active learning algorithms could select diverse and important points from the pool using image

features and performed better than the baseline for shape-and object-type words. The results show
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that Max-Log-Density-Based pool sampling was consistently effective for all cases. This experiment

also suggests that active learning algorithms that select informative and diverse points increase

language acquisition quality, especially when the training data are diverse and noisy.

5.5 Analysis of Results

The main conclusion of this study is that the selection of an appropriate active learning

method depends on the difficulty of the problem with respect to perceptual complexity, linguistical

complexity and coverage, and sparsity of objects in each class. However, I found that incorporating

different active learning methods can improve learning speed, overall performance, or both across all

cases. Overall, I found GMMs to be a reliable choice for enhancing the overall learning performance.

These results are discussed in more detail further in this section.

5.5.1 Method-Specific Findings

GMM clustering with image features recovers the selection of data with both informative

and diverse representations. This approach probabilistically clusters similar features from the same

component. However, the uncertainty-based GMM was unable to effectively find patterns faster

at the initial stages than at the end stages in the dataset when object classes were scattered in the

visual space. Uncertainty sampling depends on the feature variability for finding uncertain points

in GMM clustering, and the sampling selects noisy outliers when the variability is greater. This

finding echoes the performance reduction of uncertainty-based sampling in object feature spaces

when compared to pool-based approaches.

DPP variants of active learning methods with careful parameter tuning are well suited for
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selecting the most diverse points in the early stages of learning, which is appropriate when highly

varied perceptual features make sample diversity important. Coverage of the more complex SHAPE

and OBJECT attributes was attained significantly faster through these methods than through random

sampling. Visually varied datasets require more examples of concepts, in addition to requiring

diversity in labeling. k-DPP sampling provides diverse samples from the dataset and has proven to

be sufficient for faster convergence of characteristic concepts. The DPP-based method is able to find

diverse data samples during the initial stages and provide faster convergence to the classification

tasks with kernel descriptors as well as with CNN features. However, representativeness and

diversity are necessary to ensure a consistent improvement in performance. DPP sampling does not

ensure representativeness and is not effective in the case of multi-colored, or visually-confusing

samples. GMM-based structured DPPs provide breadth as well as diversity and perform well for

both simple and complex kernel descriptor data. However, this approach is weaker for CNN-based

object classification, possibly because the process of selecting representative data adds unnecessary

constraints which limit performance.

Although the requirement for large and diverse quantities of language in selecting data sam-

ples would be a limitation for large datasets, I found that sampling methods that could consistently

augment the visual features with a small amount of language yielded improved grounded language

systems.

Time Considerations. For a dataset with N number of training data with D dimensions, the DPP

computation requires O(Nk + k
2) [105] if the eigen decomposition of the positive semi-definite

kernel K(0) is available. In addition, the eigendecomposition takes approximately O(D3) time

complexity. Here, k denotes the size of the subsets considered in DPP sampling. Similarly, the
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GMM requires O(D3) to calculate weights that involve finding the inverse and determinants.

Because I calculated weights for every component and every data point, the overall time complexity

of the Max-Log-Density-based approaches is O(C ⇤N ⇤D3), where N is the number of data points,

and C is the number of components. Structured DPP calculation involves GMM and DPP, so it

requires O(((N + k) ⇤ k+C) ⇤N ⇤D3) operations in total. After comparing the time complexities,

Max-Log-density-based pool sampling seems suitable for large-scale datasets.

5.5.2 General Considerations

In all but the most trivial cases, random sampling from a dataset outperformed a sequential

baseline. Since describing objects in order is a normal human behavior, this suggests that, lacking

any other change, having an agent ask widely ranging questions in a varying order may improve

learning efficiency compared to passive learning.

For cases in which neither visual percepts nor descriptive language varies widely, such as

COLOR, all active learning techniques are appropriate. I show that careful selection of informative

points is most critical under these circumstances. Because the features used are simple, the main

consideration here is to select representative data quickly, assuming that learning groundings (i.e.,

training visual classifiers) will also proceed quickly.

For visually differentiated, linguistically complex datasets, the importance of having a wide

variety of samples increases. DPPs [106] are a class of ‘repulsive’ processes designed to increase

diversity (see the discussion of k-DPP, above). Tuning with GMM parameters allows the DPP

method to choose distinct, representative, and salient points in the dataset during very early stages

of learning. Uncertainty-based max posterior GMM sampling performs well on complex data but
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does not perform as strongly for sparsely populated features.

I have demonstrated that active learning techniques with carefully selected points reduce

the amount of training data needed (see Tab. 5.1). When dealing with more complex datasets,

selecting diverse and meaningful points increases performance as compared to selecting outliers.

My experiments have also demonstrated that active learning helps establish the correct order of data

points that best improve learning efficiency for both neural and non-neural visual features, and show

that the addition of language features is not necessary for pool-based learning techniques to reduce

the label cost.

To summarize, GMM pool sampling, which determines certainty based on the density of

the clustered data points, is the most reliable active learning choice for simple, complex, noisy,

multi-colored, and highly varied datasets. It is consistently able to outperform random selection with

at least a 5% increase in predictive power. GMM uncertainty sampling is not a reliable choice in

the case of visual data with extremely noisy outliers. LR is the most robust classification model for

modeling diverse limited data when compared with SVM and MLP. DPP-based and GMM-based

pool sampling produce good results in the case of neural and non-neural visual features. I observed

that feature variability affected the selection techniques more than the characteristics of the dataset

did. I believe that the vision-and-language sampling method considers the complexity and variance

in visual features as well as language features, and as a result it aids in selecting the most diverse

samples.
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5.6 Discussion

In this chapter, I have presented a thorough exploration of different active learning approaches

to ground unconstrained natural language using real-world sensor data. I demonstrated that active

learning has the potential to reduce the amount of data necessary to ground language about objects,

an active area of research in both natural language processing (NLP) and robotics, as well as

machine learning from sparse data generally. I also provided suggestions for what approach may

be most suitable given the perceptual and linguistic complexity of a particular problem. Given my

analysis of the causes of variability in performance for different algorithms and cases, I believe

these results can generalize beyond the relatively simple data seen here, making it possible for these

guidelines to apply to more complicated language grounding tasks in the future.

However, previous the optimization approaches in previous chapters were limited to learning

predefined visual categories, such as color, shape, and object words. The next chapter advances

perceptual learning optimization by presenting a generalized category-free language model of the

perceived world by omitting the need for learning visual classifiers for each category.
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Chapter 6

Generalized Category-free Grounded Language Learning

Although tasks that require language, such as navigation assistance applications, are important,

grounded language learning has traditionally depended on a very fine-grained understanding of

individual objects and their properties. This dissertation has thus far focused on optimizing the

grounded language learning problem of salient traits observed in real-world perception. The overall

objective is to develop a generalized and optimized semantic model of the perceived world from

noisy and complex language signals. Previous chapters have explored and demonstrated effective

approaches to conceptualize various categories of perception with reduced annotation costs. In

this Chapter, I focus on the category-free concept-learning problem in low-resource settings, and

specifically on removing the assumption that only concepts in pre-defined categories are to be

learned.

For an end-to-end efficient learning system, a generalized understanding of the underlying

linguistic concepts is necessary. In this work, I analyzed methods designed to solve the symbol

grounding problem. I present a computationally reasonable visual pretraining approach that im-

proves on existing concept learning systems, is robust to modality featurization/embedding, and

performs well in low-data settings.

This work demonstrates a semantic model in which language is grounded in visual percepts

without specific predefined categories of terms. I present a unified generative method to acquire

a shared semantic/visual embedding that enables the learning of language about a wide range of
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Figure 6.1. Design diagram of the unsupervised concept grounding using the latent feature discriminative
method. For every object, I extracted visual features and trained a representative feature em-
bedding by applying a latent feature discriminative model. The visual variation encoder (venc)
embeds the cumulative visual features to a low-dimensional feature representation, and the
visual variational decoder (vdec) decodes the embedding of the visual features. The extracted
low-dimensional feature embeddings are then used to create a concept classifier (cconcept) for
language grounding.

real-world objects. In addition, I evaluate the efficacy of this learning by predicting the semantics of

ground truth objects and comparing their performance. I demonstrate that this generative approach

exhibits promising results in language grounding without pre-specifying visual categories under low-

resource settings. The experiments demonstrate that this approach is generalizable to multilingual

and highly-varied datasets.

6.1 Learning Beyond Constraints

In this work, I present general visual classifiers (see Fig. 6.1) that learn language without

relying on predefined visual categories such as color and shape. My method generalizes language

acquisition by using novel, generally applicable visual percepts and natural descriptions of real-

world objects. Instead of creating classifiers for a fixed set of high-level object attributes, I used a

combination of features to create a general classifier for terms that I observe in language used to

describe real-world objects. I used deep generative models to obtain a representative unified visual
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embedding from the combination of visual features to move away from category-specific language

learning constraints.

My core contribution is a mechanism for generalizing language acquisition with an unsuper-

vised neural variational autoencoder, which relies only on small amounts of data and requires no

pre-trained image models. To compare to existing work, I evaluate the performance of my proposed

method against learning concepts both with predefined categories as well as without; however,

importantly the work presented here does not rely on existing categories. I also demonstrate con-

sistent improvements over the ability of previous methods to understand Spanish and Hindi. The

VAE approach I explore in this paper has the benefits of simplicity and approachability, while

still demonstrating effectiveness in the low-resource settings, without the high overhead of large

pretrained transformer models.

6.2 Approach

I suggest an effective generic visual classifier for training real-world object features with

noisy natural human descriptions. To learn the language and its association with visual perception, I

extracted a latent semantic embedding from the cumulative visual data and joined it with linguistic

concepts. A high-level view of my approach can be formulated as follows: 1) Extract visual features

that are associated with perception; 2) Join all extracted visual features; 3) Use the latent feature

discrimination method [141, 92] based on an unsupervised neural VAE to extract meaningful,

representative latent embedding from the cumulative feature set; and 4) Learn a general visual

classifier using the latent embedding created from the cumulative feature set (see Fig. 6.1). Here, I

intend to demonstrate how this simple discriminative method is effective for generalizing visual
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classifiers. I describe the data corpus and model in sections §2.1 and §6.2.1.

6.2.1 Unified Discriminative Learning Model

My objective is to associate linguistic concepts W with a set of real-world objects, O, in

limited data settings. To learn this grounded association, I created a generalized visual feature

embedding out of the features extracted from the object instances and used it to train a general

classifier. The components of the unified discriminative model (UDM) are detailed below.

Latent Feature Discriminative Model I used a deep generative autoencoder [92] that provides

latent feature embedding for training grounded concept classifiers. Although currently VAEs may

be considered a “standard” part of one’s language learning toolbox, I argue that this a core strength

of this paper’s approach. Nevertheless, I review the use of VAEs.

This VAE consists of an encoder, a decoder, and a loss function. The encoder is a neural

network that translates input data X into latent (hidden) variables Z. I represent this as P (Z|X). I

used a variational distribution q✓(Z), which can be viewed as the encoder of X into latent features,

to approximate P (Z|X). The decoder is also a neural network that attempts to reconstruct X from

the latent variables Z. It is modeled as P�(X|Z), with learnable parameters �.

My objective was to learn useful and meaningful latent representations (Z) from the input

data (inference network/encoder network) for use in my classification. The posterior probability was

approximated using a Gaussian function q✓(z|x) = N (z|µ✓(x), diag(�2
✓(x)) where �2(x) is a vector

of standard deviations, and µ(x) is a vector of means that are learned via multilayer perceptrons

(MLPs). These are learned by minimizing

L = �E [log p(x|z)] + KL(q(z|x)||p(z)). (6.1)
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This is the standard VAE loss: the sum of the reconstruction error (expectation of negative log-

likelihood) and the KL divergence of the approximation function and prior distribution (KL(q(z|x)||p(z)).

Straightforward Pretraining for a VAE As described above, my goal here was to form a unified

probability distribution, P (z|x) of latent variables (z) out of extracted feature variables and use it as

the general embedding needed to learn the visual classifier. Here, X is defined as the feature vector

extracted from the object o. In the experiments where attribute-based visual features were used,

X is hf1, f2...fni, and fi is a type of visual feature extracted from the object, o. In this research,

the challenge was to find an efficient representation of the feature space P (Z|X) for my grounded

learning tasks based on limited data.

Inspired by the discriminative VAE [92], I constructed a representative, meaningful low-

dimensional embedding, accepting the cumulative feature vector X as the input. My model uses a

neural network, q✓(Z), to approximate P (Z|X), which is a generic latent representation. Another

network P�(X|Z), which is considered as the decoder, is used to reconstruct X from the latent

variables Z. Employing an encoder function represented by a neural network (see section §6.2.1),

my approach learned the encoder weights of the UDM by applying all the training data as input.

Category-free Visual Classifiers Similar to previous chapters, the system learns a binary classifier

P (yw = 1|Z) for the positive items and P (yw = 0|Z) for the negative items for every relevant

concept w (see sample selection from section §6.3.1). Z was defined as the visual ground generated

from cumulative features. Vectors of the mean µ(x) and the standard deviation �
2(x) that were

extracted from the generator network defined the latent embedding Z. Unlike previous approaches,

instead of creating a concept-per-attribute classifiers, I learn a single concept classifier. For example,

instead of learning a “red-as-color” classifier by training on color features (alone), I created a unified
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general classifier for the concept “red” by associating a generalized probability distribution based on

the visual features extracted from the perceived objects. I used a binary logistic regression classifier

to learn the concept classifiers.

6.3 Experimental Results

In section §6.3.1, I detail the preprocessing steps used in the training data and the instantiation

of the UDM model. In section §6.3.2, I describe the baselines, evaluation metrics, and cross-fold

setup.

6.3.1 UDM Specification

Initial Visual Features The UDM VAE learns and computes refined embeddings, and I experi-

mented providing the VAE with three different initial visual embeddings. In the first case, I used

averaged RGB values and kernel descriptors from associated depth images [19]. I also examined

neural image processing approaches (with pretrained ImageNet [46] weights) to demonstrate the

generalizability and flexibility of the VAE. In the second case, I used SmallerVGGNet features and

as the third case I used Neural Architecture Search Network (NASNetLarge) (See section §2.1).

Sample Selection Positive object instances were selected for every meaningful concept identified.

I considered an object instance a ‘positive’ example if the object was described by the concept’s

corresponding lexical form in any of that object’s descriptions. If an instance used a novel concept,

a new visual classifier was created. To examine the significance of negative samples in the UDM

model, I considered two different types of negative samples during learning. In the first approach, all

samples except the positive samples were considered negative [182]. In the second case, I utilized
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semantic similarity measures over the descriptions [155, 153].

UDM Structure I experimented with latent embedding lengths (size of Z) ranging from 12

to 100. During early development, I found an embedding length of 50 to yield the best results

(See Fig. 6.10) The computed Z formed the input features for the discriminative classifier. For the

variation autoencoder, I experimented with a single hidden layer MLP, with hidden dimensions

ranging from 100 to 700 and found that 500 yielded the best results. Recent cross-validation

experiments with hidden dimensions ranging from 100 to 700 with latent dimension 50 showed

hidden dimension 100 and 700 as the best choices (See Fig. 6.2). I learned the weights needed to

extract the latent embedding representation by applying all the training data to the latent feature

VAE.

6.3.2 Experimental Setup

Baselines RGB-D visual classifiers were compared with two baselines. First, in the ‘predefined’

category classifier [127], visual classifiers were trained for every concept and feature category, as

per previous work. For example, “arch” was trained as “arch-as-color,” “arch-as-shape,” and “arch-

as-object” classifiers. The second baseline is a ‘category-free’ approach, where logistic regression

Figure 6.2. Comparison of the F1-score results with hidden dimensions ranging from 100 to 700. Hidden
Dimension 100 and 700 with a latent dimension 50 shows better performance compared to other
dimensions.
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classifiers are trained for every concept with the concatenated feature set. Category-free logistic

regression uses the concatenated X features instead of the Z features that UDM uses. Here, “arch”

was trained simply as “arch-classifier,” accepting as input a concatenated set of all features.

Metrics and Rigor In keeping with prior work, I measured success in grounded concept prediction

via the classification performance of the learned concept classifiers. I also used the same label

selection process as Pillai and Matuszek [153]. For each learned classifier, I selected three to four

positive and four to six negative images from the test set. If the predicted probability for a test

image is greater than 0.5, it is considered a positive result. Due to the comparatively small sizes

of the datasets, I used four-fold cross-validation, and within each fold, I calculated the average

F1-score across 10 trials. I ran the experiments on K20 GPUs, and jobs required no more than 6 GB

of memory.

Predefined
category classifer

Category-free
logistic regression

Unified discriminative method
Dim 12 Dim 50 Dim 100

Minimum 0.246 0.233 0.257 0.456 0.242
Mean 0.706 0.607 0.659 0.713 0.634
Maximum 0.956 0.888 0.968 0.963 0.900

Table 6.1. Overall summary of the F1-score distribution comparisons of all concepts. The minimum, mean
and the maximum of our method are higher than all baselines, with the UDM with 50 latent
dimensions showing better learning especially for difficult categories.

6.3.3 Limited Resource Classifications

Table 6.1 shows the overall summary of the distributional comparison of baselines with

discriminative model variants. Here, the RGB-D visual features of 72 objects were used for the

analysis. A detailed boxplot can be seen in the later section (See Fig. 6.9). The summary shows the

classification performance improvement of the UDM method even for highly noisy, visually varied,
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and traditionally underperformed visual classifiers compared to the well-known predefined visual

classifier baseline. In a micro-averaged F1 score evaluation, UDM achieved an F1 score of 0.7218

and the category-free approach achieved a score of 0.6699; meanwhile, UDM outperformed the

predefined category classifier (0.7192). This demonstrates that UDM performs as strongly as the

predefined classifier and eliminates the need to create separate category-specific classifiers.

In addition to this strong performance, UDM improves on the logistic regression-based

category-agnostic baseline for concepts that have fewer discriminative training instances. The vocab-

ulary used in our dataset for certain concepts is highly varied, meaning relatively few annotations

that use each linguistic token. This is demonstrated in Fig. 6.3, which plots the density estimate of

F1 performance for each concept classifier vs. the number of labeled examples provided for the

UDM method and category-free logistic regression baseline. As the objective is to achieve good

language acquisition with limited annotation, the goal is a high F1-score for learning from a small

number of occurrences (upper left quadrant, shaded). The tighter density of UDM (blue triangles)

shows that performance is high given limited examples.
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Figure 6.3. The comparison of the F1-score distribution of all concepts of the unified discriminative method
vs. category free logistic regression. The goal is a high F1 score with a smaller number of
occurrences, so the upper left quadrant (shaded) is the target. F1-score performance of UDM is
both high and consistent with limited annotation.
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Figure 6.4. The comparison of the F1-score distribution of all concepts of the discriminate method vs.
convolutional neural network baselines (leftmost two bars). Though the averaged F1-score of
SmallerVGGNet and UDM + SmallerVGGNet is 0.81, SmallerVGGNet scores are as low as 0.0
for some concepts. But the minimum of UDM + SmallerVGGNet is 0.37. F1-score of UDM with
NASNetLarge is 0.73 which performs better than NASNetLarge where F1-score is 0.71.

Efficacy over CNN models My analysis with CNN variants shows the quality improvement of

UDM when compared to CNN baselines (See Fig. 6.4). Here, I consider the features extracted using

SmallVGGNet and NASNetLarge CNN variants to test the efficacy of UDM over CNN features. The

results demonstrate that the minimum F1 was improved for UDM (0.37 and 0.30 for SmallVGGNet

and NASNetLarge, respectively) compared to the CNN baselines (0.0 for both SmallVGGNet and

NASNetLarge). From the results, it is clear that UDM can elevate the base quality in classification

over CNN features. I note that SmallerVGGNet performs extremely well on color and object

classification (0.75–1.0), whereas it provides low scores for shape classification (0.0–0.47). Shape

descriptions are more variable, and so more sparse, compared to color and object description. That

results in comparatively poor classification performance from the high-dimensional CNN feature set.
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Figure 6.5. Classification performance of UDM in different architecture variations with less training data.
This thorough analysis considers two negative sample varieties (semantically dissimilar patterns
as negative examples versus all except positive samples as negative examples), and feature input
combinations (CNN features with and without RGB-D features).

I also note that NASNetLarge classifiers provide very low color classification scores, especially for

concepts such as red and yellow, for which there exist many variations in the object set. Alternatively,

my UDM is able to extract a meaningful representation from NASNetLarge features.

Low Visual and Linguistic Resources The discriminative model (UDM) classified the character-
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Figure 6.6. F1-score distribution comparison of a CNN variant (SmallVGGNet) vs. UDM, for all concepts
with varying annotation frequency (horizontal axis). I operationally defined setting using either
10% or 20% of the labeled data. The performance of the UDM was high and consistent, even
with limited annotations.
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istics of objects better than the other baselines with less visual and linguistic training data. Fig. 6.5

shows the performance comparison of UDM with baselines on limited training data with different

learning parameters. With 10% of the training data, all UDM variants reached an F1-score of � 0.65,

whereas baselines were unable to generalize the learning with limited training data. Baselines (with

RGB-D) required a minimum of 30% of the training data to learn the groundings for the most

important concepts in the dataset. A CNN baseline (without RGB-D) needed 40% of the training

data to learn shape concepts, such as “triangular,” “rectangular,” and “cylinder.” Sparsity in the use of

particular descriptors results in an F1-score  0.5 for baseline classification, while low-dimensional

representational embeddings yield improved classification for UDM.

Fig. 6.6 shows the high-quality classification performance of UDM as only a small portion

of the dataset is made available for discriminative training. The figure shows the comparison of

SmallVGGNet architecture vs. UDM. These experiments utilized some percentage of the total

training data for learning and verified the efficiency of the model using one fourth of the total data.

These cases served to demonstrate how the learning growth of these architectures compared to the

UDM approaches.

Concept-wise Comparison Figure 6.7 shows the performance comparison of two baselines (See

section 6.3.2) and the variants of the unified discriminative method for every meaningful concept

for the RGB-D dataset. The predefined category-specific baseline grounds color specific language

“terms” exceptionally well compared to other approaches. On average, color classifiers had an F1-

score of 0.792 for the predefined category classifier, 0.578 for category-free logistic regression, and

0.611 for UDM with a latent dimension of 50. However, the UDM method with a latent dimension

of 50 was able to perform better than the category-free logistic regression when classifier input
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Figure 6.7. Averaged macro F1-score comparison of the unified discriminative method against other ap-
proaches for every concept with RGB-D features. I segmented the classifiers by category here for
ease of analysis as my UDM models do not consider category types. UDM with a latent dimension
of 50 can provide promising performance in grounded language acquisition for all categories.
Color-specific visual classifiers performed better than the category-free logistic regression base-
line. Object and shape classifiers performed well with my method (UDM) with latent dimension
50 compared to other approaches.

was accepted as a vector of raw features. My method with a latent dimension of 50 outperformed

both baselines for shape classification, with an average F1-score of 0.69, whereas the category-free

logistic regression scored 0.52, and the category-specific approach scored 0.61. With respect to

object classification, which is comparatively more complex than shape classification, the method

with a latent dimension of 50 performed better than the predefined category classifier and the

category-free logistic regression. F1 scores for all methods were as follows: predefined category
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Figure 6.8. Prediction probabilities of selected visual classifiers (x-axis) against ground truth objects (y-
axis) selected from a held-out test set with RGB-D features. This confusion matrix exhibits the
prediction confidence of the unified discriminative method (UDM) run against real-world objects.
Color, shape, and object variations added complexity to performance.

classifier, 0.674; category-free logistic regression, 0.616; and UDM with a latent dimension of 50,

0.754. When the minimum F1-score for UDM with dimension 50 was 0.626, the baseline predefined

category classifier’s peak F1 was as low as 0.246 and the category free logistic regression F1 was

0.233. These results verify the quality enhancement in visual classification for limited data settings.

Language Prediction Probabilities Figure 6.8 shows the association between the visual classi-

fiers and the ground truth after learning the language and vision components through the unified

discriminative method. Color classifiers showed strong performance: for example, the “yellow”

classifier was able to predict “yellow” ground truth successfully, as well as associate with “lemon.”

In the dataset, the variation of “yellow” objects included a diverse set of objects ranging bananas to

corn, whereas “purple” objects were limited to eggplant, plum, and cabbage.

Compared to color classifiers, object classifiers were able to predict object instances with

great prediction strength. The “lemon” classifier showed a positive association with yellow objects,

for example showing strong predictive ability on a lemon. The shape features of a carrot are complex

compared to a lemon, so it is unsurprising that the predictive power of the learned “carrot” classifier

was not strong compared to that of a “lemon” classifier. From different angles, pictures of carrots
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show very different shapes, whereas lemons look almost the same when viewed from all angles. In

the case of carrot, some positional angles made it look like a triangle. However, from an elevated

view, the angle of the carrot’s position made it look like the side of a triangle in my pictures. The

complexity of the features substantially affected classification accuracy.

Comparison of Macro F1-score Distributions for All concepts Fig. 6.9 shows the distributional

comparison of the other approaches with discriminative model variants. Table 6.1 shows the overall

summary of these distribution comparisons, while the boxplot visualizes the median (middle line in

the box), two hinges, two whiskers, and all outliers. The lower and upper hinges outline the 25th and

75th percentiles of the data distribution. All scores were higher than the baselines, with a minimum

F1-score of 0.4560 for the method with a dimension of 50.

Overall Micro Averaged F1-score Comparisons Fig. 6.10 indicates the micro-averaged F1-score

compared with all of the other approaches. My proposed method scored 0.72, which is higher than

Figure 6.9. The comparison of the F1-score distribution of all concepts of the unified discriminative method
vs. baselines (leftmost two bars). Minimum, mean, and maximum F1-score performance of UDM
using 50 latent dimensions is both high and consistent compared to both baselines and other
latent dimension variants.
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Figure 6.10. Averaged micro F1-score performance of visual classifiers. The unified discriminative method
(UDM) shows improved performance than predefined category classifier where classifiers are
learned per category and the category-free logistic regression where the concatenated feature
set is learned per concept.

the performances of all other methods. This indicates that extracting meaningful embeddings from

existing features is an efficient method for conducting grounded language concept learning.

Concept-wise Classification Analysis In this section, I provide a deeper analysis of the results

of Fig. 6.7 and additional qualitative observations. In general, my results demonstrate that color

concepts are learned well by the predefined category classifier. Low-dimensional training features

were used to learn color concepts in the case of a predefined category classifier, and lower variability

in these training features led to better classification. Low-dimensional features lack representation

compared to complex high-dimensional features when all features are combined into representational

embeddings. In the experiments, the UDM combined less varied color features and other highly

varied features. This combination led to worse performance in the case of color concepts. In the

case of “blue” concepts, for example, less variability in the training features and less noise in the

annotations produced higher-quality classifiers for predefined category classifiers that used only

color-related training features. However, the addition of highly varied shape features confused the
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quality of the UDM classifier. This case is similar to the case of green classification. The dataset

contained highly varied visual objects for the green concept, including vegetables and children’s toys.

Due to the influence of high-dimensional and highly varied shape features and noisy annotations, the

green concept with the UDM classifier selected most of the vegetables as “green.” Orange concept

classification became noisy as the original annotators1 described most of the red and yellow objects

as orange. This produced a highly varied dataset for the orange classifier, which resulted in a weak

classification for UDM. The predefined category classifier for orange as a color concept showed

good performance, whereas orange as an object concept showed weak performance. Less noise in

the purple concept annotation and low variability of the training items produced a strong “purple”

classifier for all methods. Moreover, UDM extracted a meaningful latent representation for “purple”

concepts. In the case of “red” concept grounding, high variability in the dataset and average noise

in the annotation played a significant role in classification. Less noise in the annotations seemed

to be a key component in UDM concept grounding. Similarly, the original annotators described a

variety of vegetables such as corn, potato, orange, and banana as “yellow” concepts. This results in

highly variable visual training data to the classifier, causing difficulties for the UDM in extracting

meaningful representations.

Experiments demonstrated that noise in the annotations affected the quality of the performance

of “object” type concepts as well. Plums, potatoes, tomatoes, oranges, and limes were often described

as apples, as noisy annotations brought highly varied visual sets into the training data. At the same

time, a lack of noise in the annotations resulted in a robust classifier for the “banana” concept,

despite each image of a banana potentially being quite varied (i.e., based on the angle at which
1“Original annotators” refers to the crowdsourced workers who provided the descriptions for the Pillai and Matuszek
[153] dataset, which were then converted into the concepts I classified.
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the image was taken). Furthermore, less noise in the annotations and less varied visual features

made the “cabbage” classifier a strong one. Again, less noise and less visual variation helped make

the “corn” concept a robust classifier. It is interesting to see that banana was sometimes selected

as “cucumber” as I learned some bananas are green and long like cucumbers. Although the shape

features are not exactly the same, the shape of the cucumber is visually similar to that of several

other vegetables. It is therefore interesting to observe that the low-dimensional representation of

cucumber training features appeared identical for several vegetables of similar color and shape.

Similar to the “cabbage” classification, the “eggplant” concept received less noise and less visual

variation. In the case of “lemon,” the original annotators were confused between oranges and lemons.

Moreover, tomatoes were annotated as lemons, on one occasion. Although the annotation was noisy,

the visual features did not vary considerably. This aided the UDM in extracting a useful latent

embedding for the “lemon” classifier. At times, lemon objects and lime objects were both annotated

as “lime”. The similarity of shape features to many other vegetables led UDM latent representation

to choose similar objects as “lime.” Noiseless annotations, but common round shape features,

made the “potato” concept an interesting one to learn. UDM could extract a generalizable latent

embedding and perform a reasonable classification for this vegetable. Similarly, the visual concept

for “tomato” held a common representation, yet the noisy annotation limited the performance of the

UDM.

6.3.4 Multilingual Verification

My objective here was to show that this simple discriminative method is generalizable to

multilingual visual classification (see Tab. 6.2). I used Spanish and Hindi descriptions [89] collected
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Language Sampling 10% 20% 30% 40% 50% 60% 70%

Spanish Category-free LR 0.05 0.14 0.23 0.41 0.43 0.49 0.48
UDM 0.14 0.24 0.32 0.45 0.45 0.48 0.52

Hindi Category-free LR 0.038 0.160 0.228 0.334 0.437 0.504 0.518
UDM 0.187 0.290 0.413 0.490 0.516 0.536 0.552

Table 6.2. F1-score performance of UDM in multilingual classification with less training data. UDM provided
a consistent improvement compared to the category-free logistic regression baseline with both
Spanish and Hindi training data.

from non-trained humans for 72 RGB-D objects in a dataset [153] for this experiment. Because the

current top performance on this Hindi and Spanish grounding problem [89] uses logistic regression,

I used category-free logistic regression as a baseline here. With both Spanish and Hindi descriptions,

the UDM achieved consistent performance improvements compared to the baseline. This validates

that using a generic visual classification approach is useful regardless of the language or complexity

of the input data.

6.3.5 Highly Complex, Multi-Colored Resource Verification

In this experiment, an RGB-D dataset with 300 objects was used for testing. As a baseline,

the CNN variant NASNetLarge was selected for evaluating language acquisition performance. Even

with 10% of the total training data, the discriminative method delivered better results than the

CNN approach. My approach scored 0.46 F1-score for the classification of all concepts, whereas

NASNetLarge was able to score only 0.39. This shows that my approach is effective in learning a

better representative embedding from the visual features and is generalizable to any dataset.
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6.4 Discussion

In this work, I have presented a simple, yet strong approach for learning a unified language

grounding model that is not constrained to predefined attribute categories. I show that pre-training

a straightforward Gaussian variational autoencoder efficiently grounds linguistic concepts found

in unconstrained natural language to real sensor data. To compare against previous, more limited

work, my evaluation primarily focuses on prediction of color, shape, and object descriptions. I also

present experimental results demonstrating successful learning of a broad range of concepts from a

well-studied RGB+D dataset. I hope that the improvements in low-resource settings will provide

tools and insights for future work.

Analysis with my unified discriminative method, which extracts the relevant representation

of feature sets, suggests that the method is effective. Moreover, its efficacy and performance

improvements, especially in low-resource settings, are striking. The efficient use of such a learning

system can potentially reduce the need to manually select important concepts from large corpora.

89



Chapter 7

Conclusion

This thesis describes a set of works for a grounded language learning system that utilizes

limited resources to effectively associate natural expressions with real-world observations. Incorpo-

rating such methodologies benefits language acquisition in estimating the complexities of the system,

automatically extracting counter-perspectives of the world, organizing the order of perspectives

to reduce the severity of training, and finally comprehending the representations in a generalized

structure.

My research thesis states that an intelligent learning system can construct an optimized,

representative, unified semantic model of the perceived world from noisy, ambiguous, complex,

and limited language channels using carefully selected probabilistic and active machine learning

techniques.

7.1 Future Work

A natural way of acquiring knowledge and having a conversation with novice humans in

an interactive environment is always challenging for artificially intelligent systems. This research

is motivated by the necessity for effortless learning and intercommunication in person-centric

situations in human–robot interactions. To develop an end-to-end human–robot interactive language

learning framework, more research should be conducted in the following areas:
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Conversation based Language Learning: My thesis used the language descriptions collected

from common users using the AMT crowdsourcing tool. In a real-world human–robot interaction

scenario, the robot needs to incorporate the nuances of dialogue-based information. The incorpo-

ration of unsupervised negative sample generation would enhance the quality of the conversation,

and therefore of the language learning. Additionally, the human response adds certainty to negative

selection.

Semantic based Language Model: My work used the “concept-as-classifier” language model

to extract meaningful and important concepts from noisy human descriptions. It used tf*idf to

filter through the significance of the concepts. Although effective, the system demands a better

context-sensitive language model to better incorporate significant and noisy natural language in

real-world communication.

Active Learning Systems with Prior Knowledge: My research has demonstrated that an inter-

active robot with no prior information can achieve enhanced learning performance with limited data

using unsupervised techniques. Semi-supervised models can further improve my learning model

from a small number of labeled samples to classify a large number of unlabeled real-world objects.

However, the relationship between the labeled and unlabeled distributions could significantly affect

learning performance. Another future enhancement should explore active learning techniques that

improve language efficiency when the system has prior knowledge. Selecting representative samples

from the unlabeled population using VAEs might also effectively bolster the learning model’s

efficiency and cost.
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Improved Human–Robot Interaction: Human–Robot interaction serves an essential role in

many robotics fields, including manufacturing, surgery, aviation, military, agriculture, and education.

Future human–robot interaction research should pay careful attention to engineering “entertainment”

in social conversations. Technologies should enhance the how entertaining the learning process is by

collecting inputs from human–robot interaction and applying them to machine learning techniques.

Such improved interactions could build reliable and trustworthy relations that help foster common

understanding. Designing an interaction model should also address legal, moral, and ethical issues

such as privacy, manipulation, and bias that exist in society. The reflection of societal norms and

personal preference in conversations and their potentially adverse effects on the human–robot

relationship should also be well-studied.

Other Applications: As virtual media is prevalent, learning in simulated environments has

become increasingly popular. Simulated environments also require a large number of visuals

with varying parameters. Fusing different latent representations using VAEs has the potential to

successfully generate a variety of images for gaming, architecture, mapping, and virtual reality

applications.

7.2 Synopsis

This dissertation proposed several research methodologies to advance current multimodal

grounded learning systems. The proposed system enables a robot to encapsulate the semantics

of novel concepts in a generic form from a multimodal representation, and it enhances learning

methodologies to achieve effective learning from minimal data.

The primary contribution of this research is to further the development of robot learning,
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advancing the ways in which robots learn during human–robot interactions to approach the same way

that humans learn from each other. This work will contribute to the future of artificial intelligence,

especially in relation to social/human behavior.
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