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Generalization remains a central challenge for machine learning algorithms, espe-

cially when embodied in artificially intelligent agents that learn and plan under uncer-

tainty. By using reinforcement learning (RL) or probabilistic planning techniques, such

agents may be trained successfully to excel at solving a specific, narrow task. Upon trans-

fer to a different environment, however, where they face novelty in the form of new goals

or unusual surroundings, their lack of an ability to adapt is most clearly highlighted by

degraded performance. In contrast, humans possess a facility for adaptation. We create

and recall concepts that enable us to interpret any anomalies we encounter. Likewise, we

develop and repeat habits that help us navigate our life, allowing us to think further into



the future by alleviating the burden of contemplating all the details of tasks we tackle in

a common day.

In this thesis, I aim to make agents more adaptable by developing new methods

for reasoning abstractly. Through a process of concept formation, agents expand their

understanding of entities in the world such that any anomalies may be interpreted based

on their conceptual relation to what has already been learned. I develop an algorithm for

concept-aware feature extraction, such that agents maintain a conceptual knowledge base

that grows to accommodate new concepts. Exploring the application of this approach

to two decision-making paradigms—contextual bandits and temporal difference RL—I

demonstrate how explicitly reasoning about concepts makes agents adapt more readily

when facing a stream of anomalous objects or upon transfer to harder tasks.

For habits, I articulate how decision-making agents may assemble useful patterns of

behavior into formal structures called subtasks, which aid an agent’s ability to reason ab-

stractly, over varying timescales. Subtasks, thus, facilitate creating and reusing solutions

to common problems. I build upon two separate formulations of subtasks: the options

framework (a standard approach to hierarchical RL) and abstract Markov decision pro-

cesses (AMDPs). I develop new algorithms to investigate how abstract option models

may be approximated efficiently from experience, how abstract option policies may be

adapted to novel tasks, and how hierarchies of AMDPs let agents plan more flexibly and

effectively at varying levels of abstraction. Finally, I combine these ideas to make a new

model-based RL algorithm for planning with abstract, learned models: an agent creates

AMDP subtasks bottom-up from data and learns to plan with them top-down, using the

hierarchy it generated to generalize and adapt to variant tasks.
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At first sight experience seems to bury us under a flood of external objects, press-
ing upon us with a sharp and importunate reality, calling us out of ourselves in
a thousand forms of action. But when reflexion begins to act upon those objects
they are dissipated under its influence; the cohesive force seems suspended like a
trick of magic; each object is loosed into a group of impressions–colour, odour,
texture–in the mind of the observer. And if we continue to dwell in thought on this
world, not of objects in the solidity with which language invests them, but of im-
pressions unstable, flickering, inconsistent, which burn and are extinguished with
our consciousness of them, it contracts still further; the whole scope of observa-
tion is dwarfed to the narrow chamber of the individual mind. Experience, already
reduced to a swarm of impressions, is ringed round for each one of us by that thick
wall of personality through which no real voice has ever pierced on its way to us,
or from us to that which we can only conjecture to be without. Every one of those
impressions is the impression of the individual in his isolation, each mind keeping
as a solitary prisoner its own dream of a world. Analysis goes a step farther still,
and assures us that those impressions of the individual mind to which, for each
one of us, experience dwindles down, are in perpetual flight; that each of them is
limited by time, and that as time is infinitely divisible, each of them is infinitely
divisible also; all that is actual in it being a single moment, gone while we try to
apprehend it, of which it may ever be more truly said that it has ceased to be than
that it is. To such a tremulous wisp constantly re-forming itself on the stream, to
a single sharp impression, with a sense in it, a relic more or less fleeting, of such
moments gone by, what is real in our life fines itself down. It is with this movement,
with the passage and dissolution of impressions, images, sensations, that analy-
sis leaves off–that continual vanishing away, that strange, perpetual weaving and
unweaving of ourselves.

–Walter Pater, The Renaissance

xi



Chapter 1: Introduction

In daily life, we encounter novelty of all kinds: new sensations, unfamiliar words, and

unusual objects. Most commonly, we identify these anomalies as peculiar combinations

of recognizable perceptions; we do our best to interpret and react to them. Without our

innate capacity for adapting in the face of such uncertainty, we would quickly become

acquainted with catastrophic failure. Indeed, human adaptability could be regarded as

crucial to intelligence. Likewise, to make intelligent decisions about the future depends

directly upon our ability to generalize about our actions and their effects on the world

around us. Even when thrown into the unknown, we seek out additional information,

make predictions, form plans, and update our beliefs about the world.

How might a machine, directed by its programming, achieve these behaviors? Since

its inception, the science of artificial intelligence has been guided by Alan Turing’s per-

spective on this topic. In particular, he argued that debating the question “can a machine

think?” is less significant and worthwhile than exploring a machine’s potential to emulate

a human reaction, namely, to adapt to circumstances as we do [162].

The field of machine learning formalizes these notions of adaptability under the

broader topic of generalization, in which a machine uses data, prior knowledge or ex-

perience, to address new input. Learning, tabula rasa, inherently requires some form of
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adaptation by which the internal state of a machine is changed. Generalizing from what

has already been learned to handle new situations continually is the greater challenge un-

der consideration. This type of inference may be as straightforward as interpolating a new

value from a learned function, or as complex as placing a stone in the game of Go that

causes, uncharacteristically, the human opponent to leave the room.1

I aim to tackle this latter case, the problem of decision making, when a machine

applies what it has learned to produce meaningful effects in the world and repeatedly

adapt to any feedback it observes. Specifically, in this and subsequent chapters, I make the

following contention: achieving more adaptable decision-making machines begins by

representing and reifying abstractions of both perception and behavior. The resulting

investigation of abstract decision making in this thesis proceeds by analyzing techniques,

as introduced in the following sections, for agents to reason about anomalies through

concept formation and generalize their behavior through temporal abstraction.

1.1 Abstract Decision Making

A central aim of artificial intelligence is to create programs capable of rational action.

Typically, these programs are restricted to a given setting, and are assigned an objective

to optimize, such as minimizing some measurement of cost over time or attaining the

greatest expected utility. Machines programmed for these ends are commonly referred to

as intelligent agents [133].

Agents, like humans, require the ability to adapt to changing environment, both to

1This event is referred to as “Move 37” of the second game played by AlphaGo, a machine learning
algorithm, against the world champion [60, 111].
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learn and to operate robustly. This fact is particularly true for situated agents such as

robots that function in the open, with real, physical elements. Imagine robots capable of

adaptability, correctly reacting to an anomalous obstruction or deciphering novel com-

mands from a human collaborator. Such a goal applies equally for software agents; even

in systems with well defined bounds and parameters, it would be a reasonable desire to

transfer those agents to new circumstances, evaluating unseen data under nonstationary

conditions.

How might problems be framed to assess the intelligence of such agents? An as-

sumption underlying this question is that an agent must make a decision: given some

input data representing an object, observation, or situation, it generates some output as

a number, label, grouping, delineation, or action. A human designer generally presents

these tasks as either supervised, unsupervised, and reinforcement learning (RL). This

third paradigm, RL, uniquely considers the scenario in which an agent’s decisions affect

what it next observes. Thus, in assessing the ability of agents to adapt and generalize

intelligently, I approach solutions from the perspective of RL.

A key problem for RL agents is that they are most often engineered and trained for

a specific task or setting alone. Generalization or adaptability to new situations is pro-

hibitively costly or not possible given the agent’s programming or internal representation

of knowledge. Many possible and overlapping avenues of solutions are under exploration:

function approximation [147,172] (including deep RL, in which artificial neural networks

serve as approximators [9]), task-centric transfer learning [28, 154], learning-to-learning

and meta-RL [41,138]. Each of these topics focuses on a particular angle, placing certain

challenges and possible solutions at the fore. Similarly, in grappling with this goal of
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generalization, I investigate abstraction, the creation of representations suitable for more

generalized decision making,

1.1.1 Two Types of Abstraction

I promulgate a two-pronged approach for abstract decision making. An agent perceives

its current state and executes its decisions; abstractions may be made from realizations

of both the former (states) and the latter (actions). One might use the term concept to

describe each of a state abstraction and an action abstraction, and concept formation as

the process creating them [1]. Reasoning fully abstractly (based on input observations

and output conduct) requires forming state concepts and action concepts.

Employing the term “concept” courts danger in its vague and widespread use across

fields such as linguistics, psychology, and cognitive science. Concepts may be the fun-

damental constituents of thought, possibly innate, inextricably linked with language and

mentally grounded to symbols like words [43,44]. Alternatively, they may be abilities that

describe what the mind can do rather than what the mind represents [77]. Or, perhaps they

are probabilistic prototypes from which we create categories [106]. Even bringing our fo-

cus upon RL literature, there is no consensus usage: concepts may be behaviors [62],

programs [88], symbols [46,47], spatial relations [114], clusters of states [52], or clusters

of points in state-action space [115]. From this diversity of application, I distill a more

precise meaning for the remainder of this thesis.

State concepts clearly must capture some generalization about the agent’s world.

In contrast, action concepts express repeated patterns of behavior over which an agent
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might reason. As such, they might more readily be called habits, as actions grouped

into units that perform desired procedures. Following from the history of philosophy,

the notions of concept and object are connected logically; Gottlob Frege’s definition of

concept is a mapping from an object to a truth statement about the properties of that

object (“X is greater than 2,” “X is happy,” “X is a planet”) [45, 174]. I adhere to this

phraseology and apply the term “concepts” to mean abstractions based on world states

and an agent’s observations. Uniting these ideas together, I suggest they be considered

broadly as concepts (abstractions of the perceptions) and habits (abstractions of behavior).

In later discussions, I refer to the instantiations of concepts and habits respectively as

formal concepts and subtasks, names more commonly used in literature.

1.2 Anomaly Reasoning through Concept Formation

A key problem in any decision-making situation is the question: how should an agent react

to an anomaly? By anomaly, I refer to any novel or unexpected entity in the environment,

with respect to an agent’s purpose, experience, and typical milieu. Therefore, for practical

purposes, anomalies broadly encompass any features, objects, or situations before which

an agent has never seen.

The ability to reason about anomalies would constitute apprehending and suitably

incorporating them into decision making. Such methods would necessarily improve the

speed and quality of learning, minimize failure, and ensure versatility in changing, un-

certain settings. This process of relating unknown phenomena to the known is closely

related to the goals of knowledge transfer and lifelong learning, where the same agent
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Figure 1.1: A schematic cartoon of concept formation. An agent forms abstract con-
cepts from an observation in a source task, and generalizes that knowledge to anomalies
observed in a target task. In this example, the agent learns about shapes and colors. Con-
cepts are hierarchical: the sub-concept of “red chair” has the super-concepts of “red” and
“chair.” Likewise, that sub-concept is more conceptually similar to “red backpack” than
“blue backpack.” The agent learns behaviors associated with these concepts, and trans-
fers this knowledge (denoted by the dashed orange lines) to a new task. It then interprets
the new objects it encounters by relating unfamiliar concepts abstractly to what it has seen
before.

reuses its experience across multiple tasks among various domains. I propose that suffi-

cient anomaly reasoning requires a framework of three processes in sequence: identifica-

tion, interpretation, and adaptation to anomalies. Each of these stages requires some form

of explicit representation to consider new, anomalous observations in the light of prior

experience.

To achieve this end, I contribute a framework and algorithms for agents to recog-

nize and react to anomalies explicitly through concept formation [42]. The process of

conceptualization, or forming concepts based on objects in the world, produces the state

abstraction necessary for generalization as discussed in Section 1.1.1. To achieve anomaly

reasoning, concept formation reshapes the perceptions into representations of an extensi-
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ble, hierarchical knowledge base (of concepts), such that new perceptions are subsumed

into this space. In particular, I leverage the theory of formal concept analysis (FCA) to

generate and represent concepts extracted from arbitrary data [124].

A formal concept in FCA encapsulates a relevant cluster of features, relating objects

to their properties, such that they possess membership in successively abstract sets. In this

way, FCA theory parallels Frege’s logical formulation of concepts and objects [45]. Each

formal concept, then, is an emblem of an object subset paired with a subset of their shared

properties. For decision making, these concepts serve as the internal abstractions of expe-

rienced phenomena, grouping features that agents may recognize, retain, and recombine

to recontextualize anomalies into the space of what is known.

At a high level, I outline how agents may create concepts to store knowledge and

more gracefully adapt to anomalies. By forming concepts, an agent essentially maintains

an ever-growing ontology that connects decisions to meaningful properties of its world

at various levels of abstraction. To perform anomaly reasoning, an agent perceives its

surroundings, extracts conceptual features, and learns behaviors to thereby interpret any

anomalies, for instance, by finding their closest-known analogue in conceptual space.

Ultimately, all anomalies are progressively incorporated into an agent’s understanding,

mapped into this learned structure, interpreted, and assimilated appropriately. Concept

formation, thus, offers an active bottom-up construction of a world model in which an

agent retains learned objects, attributes, and the relations among them. Together, anomaly

reasoning and concept formation unite to help agents attain knowledge transfer and life-

long learning while operating under uncertainty.

This approach combines machine learning and formal structures of knowledge, si-
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multaneously making agents’ decisions more explicable and granting the ability to trans-

fer learned behaviors to tasks across environments where novelty and exogeneity – that

is, anomalies – are possible. In this dissertation, I introduce a theoretical framework for

anomaly reasoning through concept formation, and investigate how the symbolic and log-

ical structures of FCA offer advantages in application to the statistical learning tasks of

supervised classification, multi-armed bandits problems, and reinforcement learning.

1.3 Generalizing Behavior through Temporal Abstraction

Human knowledge is not limited just to existing objects and concepts derived from them;

we also reason abstractly over our interactions with the environment, continually form-

ing long-term plans and aiming to achieve distant, abstract goals. Enabling generaliza-

tion over actions, hence, complements an intelligent agent’s abstract understanding of the

world via concepts. By learning how the structure and order of our actions affect the

world around us, we make decisions by applying the principle of induction, reasoning

about future causes and effects based on previous experiences.

Habit formation facilitates this process. A habit, the realization of action sequences

into a whole object unto itself, alleviates the cognitive load of shuffling through the

plethora of possible paths one might pursue. Habit, as a force solidifying convention and

routine, is much maligned by such a range of thinkers as Francis Bacon, Ralph Waldo

Emerson, Walter Pater, and Samuel Beckett, though it gains support from one key figure:

William James [163]. As a progenitor of the science of psychology, James articulates

his notion of habit, specifically that “habit simplifies the movements required to achieve
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Figure 1.2: A schematic cartoon of habit formation. An agent forms increasingly abstract
habits by generalizing its repeated behaviors. In this example, the agent plans navigation
in cardinal directions, traveling among rooms separated by doors. Habits are parameter-
ized: instead of going to a specific door, agents could learn the subtask of moving to any
door, habitually. Example grounded rollouts are shown in visualizations of the Cleanup
domain (see Chapter 5). Ultimately, agents may compose habits to construct hierarchies
of more abstract ones, such as using the habit of going between doors to reach new rooms.

a given result” and “habit diminishes the conscious attention by which our actions are

performed,” casting these as crucial benefits [67]. Excessive deference to habit certainly

breeds unthinking automatism in people. However, when enlisted for efficient over inju-

rious ends, rather than undermining intelligence habit offers a basis upon which one finds

the consistency and security to attempt more bold, creative, and exploratory endeavors.

Precisely in this sense, I argue that a useful habit provides the building block by which a

human or machine agent may bound from the local to the distant in time and space.

In the realm of artificial intelligence, this process of generalizing behavior for deci-

sion making is most frequently considered from the vantage of temporal abstraction [150].

For people, temporal abstraction means envisioning our progress over varying time scales.

As a human agent operating in the world, one does not consider only the most low-level
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actions possible, but also high-level patterns or sequences of actions. For example, in

traveling from city to city, driving a car requires many minute, fine-grained motions. The

planning and communication of an itinerary, however, invariably centers around land-

marks such as route names, approximated distances, and expected times. A road trip

across the country might be discussed at an even higher remove, such that our under-

standing of navigation occurs at successively more abstract periods of time.

Paired with temporal abstraction is the notion of a hierarchy of actions. At any given

moment, the individual proximate actions one takes are usually in accord with some over-

arching purpose. Upon learning repeated patterns of actions as habits that accomplish a

goal, it may be more formally stated that one further reasons about them as subtasks [64].2

Composing subtasks yields a task hierarchy: a subtask comprised of subtasks is inherently

temporally abstract, but may be reasoned about atomically.

Such abstract tasks are naturally complemented by state abstraction, focusing on

objects in the world that are most important while ignoring those that are irrelevant. When

tasked with driving a car, for example, one cares about the local space inside the car, such

as one’s posture in the seat; in thinking about how to reach one highway from another,

however, such details are not factored into one’s plans. It is precisely this combined,

mutual benefit of state and temporal abstraction that I investigate in this dissertation,

generalizing in the context of novelty. In particular, my approach formulates habits as

subtasks in a representation conducive to being learned; I develop and assess algorithms

for learning them simultaneously with various levels of state abstraction, using them to

2In this thesis, I defer to the common term for habits, “subtasks,” though I suggest this more colloquial
name aptly suits its usage in decision making.
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plan abstractly over their expected duration, and grounding them to anomalous tasks.

1.4 Dissertation Outline

I now outline the structure of this dissertation, including a recapitulation of my problem

statement and summary of contributions as they appear throughout the contents of this

text.

1.4.1 Problem Statement

I aim to make and analyze techniques for improving the ability of artificially intelligent

agents to generalize. The goal of generalization addresses a core problem of such agents,

namely, that they may be trained solve a specific, narrow task, yet struggle to adapt to

new challenges and preserve what they have learned. Currently, practitioners delineate

subtopics of generalization like transfer and meta-learning, while applying different forms

of function approximation to achieve generalization; I introduce these topics broadly in

the next two chapters, and in later chapters I address the limitations of related work in

context with my methods. Unique to my approach, I unite statistical machine learning

with formal structures of knowledge so that agents explicitly create concepts and habits,

which are reified abstractions of states and actions, respectively. By learning concepts,

agents can subsume novel entities into their knowledge, achieving anomaly reasoning

(correctly interpreting and reacting to something new). By learning habits, agents adapt

better to new situations, more efficiently model the effect of their actions upon the world,

and more effectively plan into the distant future. The ability to generalize is central to
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human intelligence; improving it for agents makes them more robust and successful when

facing uncertainty. Ultimately, I advocate a vision for these to threads to be united, and in

the final chapter I lay out the agenda for future work to explore a more deeply entwined

interaction of concepts and habits.

1.4.2 Trajectory & Summary of Contributions

I draw upon disparate areas of study, primarily reinforcement learning, probabilistic plan-

ning, function approximation, and concept formation. Consequently, I begin in Chapter 2

with an overview of the background necessary to understand these four topics. I specifi-

cally highlight the theories of Markov decision processes, multi-armed bandits, and for-

mal concept analysis, as these form the basis of each future chapter. Chapter 3 surveys

a broad range of related approaches that inspired and help contextualize the remainder

of the thesis. Each of the subjects under discussion affect aspects of generalization and

adaptability, especially the use of abstract, symbolic, and structured knowledge. I pro-

vide an overview of methods for state abstraction, transfer and lifelong learning, memory,

case-based and analogical reasoning, anomaly detection, and concept-based learning.

Chapter 4 proposes a theoretical framework for reasoning about anomalies. The

articulation of this problem is novel, and emphasizes the essential procedures necessary

to identify, interpret, and adapt to anomalies. The discussion revolves around FCA, espe-

cially the application of formal concepts as vehicles for finding abstract relations among

observed entities. Formal concepts possess advantageous properties for doing so: they are

innately hierarchical, make minimal assumptions about the structure of input data, and
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Figure 1.3: An example concept meta-graph. In Chapter 5, I explain how I define this
hierarchical structure. It expresses the relationship between abstract, formal concepts
(nodes). The meta-graph shown here is assembled from a single trial of 300 episodes of
the Synthetic CB problem (see Section 5.2.5.2).

permit an automatic extension to any newly observed features. I conclude by showing

how a basic anomaly interpretation problem can be modeled as a classification task, and

demonstrate the viability of a formal concept approach to mapping unknown to known

objects.

Chapter 5 introduces concept-aware decision making, where state abstraction is

handled through concept formation, promoting the transfer of knowledge so agents may

better adapt to uncertainty. First, I build upon the theory of anomaly reasoning from Chap-

ter 4, extending it to an object-oriented Markov decision process setting, suitable for both

RL and planning. I call this contribution concept-aware feature extraction (CAFE) [170].

After discussing its properties as the basis for a form of function approximation, I first

examine CAFE in a multi-armed bandits scenario. Dubbing the generic method concep-
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tual bandits with concepts (CBC), I explore an implementation of it with hybrid linear

models, based on LinUCB [90]. These results include a static synthetic data problem, for

which concepts would be ill-suited, and more realistic tasks of increasing difficulty that

highlight the benefits of CAFE when dealing with anomalies. In these more complex do-

mains, anomalous objects and contexts are ubiquitous; CBC agents evince an improved

ability to adapt and generalize. To understand the learned structure of concepts more

clearly, I also develop a novel visualization technique for viewing the latent concept meta-

graph. Proceeding into RL, I discuss CAFE as applied to temporal difference algorithms:

concept-aware reinforcement learning (CARL). Knowledge transfer becomes even more

challenging in this paradigm, as the decisions that are made based on concepts also affect

future performance. As with CBC, I find CARL algorithms more gracefully handle the

variety and uncertainty in new environments. These contributions are articulated fully in

this thesis; I intend each to constitute the basis of future publications.

In the final set of chapters, hierarchical decision making is extended with new meth-

ods that help agents learn to generalize abstract actions played out over time. Chapter 6

outlines the foundations of habits as temporal abstractions. These hypostatizations are

represented by a hierarchical organization of subtasks. Starting from an overview on

existing methods for bottom-up learning and transferring subtasks, I articulate my con-

tributions to the topic, from work with colleagues: the expected-length model of options

(ELM) [4], and portable option discovery (POD) [159]. Chapter 7 covers additional re-

lated work on temporal abstraction from the top-down view. There, I focus on the back-

ground behind joint work on abstract Markov decision processes (AMDPs) [55], in which

agents formulate and reuse long-term plans at multiple levels of abstraction in a task hier-
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archy. Chapter 8 unites the ideas of state abstraction, bottom-up learning, and top-down

planning into a singular approach: planning with abstract, learned models (PALM). With

PALM, agents discover, from experience, the abstract representations and structures that

permit transfer and generalization for subtasks over time. This work is in submission to

be presented as a conference paper this year, and is based upon preliminary model-based

extensions of AMDPs [171].

Finally, Chapter 9 concludes the dissertation and discusses future work that further

builds upon state and action abstractions, synthesizing the presented approach of con-

cepts and habits towards more generalized, abstract decision making. Combined, my

contributed efforts endeavor to help make agents better generalize under uncertainty. By

acquiring knowledge representations suited for transferring their experience to new tasks,

these agents may be said to be more adaptable and intelligent.
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Chapter 2: Background

This dissertation discusses an arc of research covering approaches to reasoning about

anomalies, concept formation, and abstractions over state space and time. The foundation

is established in this chapter, which introduces agent-based methods of decision making

(reinforcement learning and planning) and an information-theoretic approach of repre-

senting an ontology of objects and their attributes (formal concept analysis).

2.1 Markov Decision Processes

Reinforcement learning (RL) and probabilistic planning are related paradigms for solving

decision-making problems where an intelligent agent makes an observation, interacts with

the environment, and receives feedback in the form of a reward or punishment [128, 148,

149]. Stochastic decision-making problems are commonly described by Markov decision

processes (MDPs), in which observations are defined as states.

Definition 2.1 (Markov Decision Process). The finite Markov decision process
(MDP) is defined as a five-tuple:

M := 〈S,A, T, R, γ〉,

containing a set of states S, a set of actionsA, a transition probability distribution
function T , a reward function R, and a constant scalar discount factor γ [20].
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States are assumed to be fully observable, encompassing the totality of the envi-

ronment. Therefore, states do not possess any inherent uncertainty, hidden information,

or latent parameters; states with such properties are encompassed by the larger class of

partially-observable MDPs (POMDPs). Action sets may be restricted, with certain ac-

tions not permitted or available in certain states. The transition probability T is a function

of the form T (s, a, s′) = Pr(s′|s, a) of entering the next successor state s′ ∈ S upon

executing action a ∈ A from source state s ∈ S . A simple transition is considered to

occur in one time-step. The function R : S × A × S → R expresses the feedback re-

ceived when following a transition (s, a, s′), such that real number r = R(s, a, s′) is the

immediate reward of the transition at that time-step. The parameter γ ∈ [0, 1] is known

as the discount factor, representing an agent’s preference of immediate reward relative to

future rewards discounted geometrically (as in Equation 2.1). A γ of 0 has an agent only

consider the current reward when updating, where values of γ approaching 1 increase the

agent’s emphasis on rewards in future time-steps.

A crucial mathematical assumption of MDPs is the Markov property, that the tran-

sition probability of the successor state s′ and expected reward r are conditionally depen-

dent only on the current state s and action a. Thus, in general, decision-making algorithms

assume only access to the current state. Many techniques do exist for augmenting an agent

with memory, such as by storing a history of sampled transitions from which to perform

batch updating or experience replay, though these only affect learning (the Markov prop-

erty is assumed to hold, and the underlying MDP mechanics remain unchanged).
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MDPs as Tasks. An MDP poses a formal representation of a scenario, or task, for the

agent to solve. Without sacrificing an MDP’s generality, the specification may include

a set of terminal states E ⊂ S in which an agent’s episodic learning would terminate.

E could capture, for instance, cases of success and failure for the task at hand. In later

discussions of MDPs, the terms domain and task universe interchangeably describe a

family of related tasks. A domain, then, may be viewed as a distribution of possible tasks

from which a specific task MDP is drawn.

RL vs. Planning. RL differs from planning in the task knowledge that an agent is

assumed to have. In particular, planning tasks provide an explicit model of the transition

dynamics and reward (such as the true T and R of the MDP). RL agents, however, lack

direct access to those functions.

Solving MDPs. An agent typically attempts to solve an MDP by finding a policy, π,

some function that specifies how an agent should behave in a given state. The solution

to any MDP is the optimal policy, π∗, that maximizes the expected discounted future

rewards. A deterministic policy is a mapping of states to action, π : S → A. More

generally, a stochastic policy π : S × A → [0, 1] expresses the probability π(s, a) that

the agent should take a while in s. Algorithms find π∗ by computing either V , the value

function (expected value of discounted rewards, given starting state s while following π),

or Q, the action-value function (expected value of discounted rewards, while taking a in

s and thereafter following π).

18



Definition 2.2 (Value Function). For a given MDP, the value function is defined
under a policy π as:

V π(s) := Eπ

[
∞∑
t=0

γtrt

∣∣∣∣∣ s
]
, (2.1)

The value function captures the notion of a state’s utility, based on the average discounted

future rewards that would be received by taking the actions specified by π.

Definition 2.3 (Action-Value Function). For a given MDP, the action-value func-
tion is defined under a policy π as:

Qπ(s, a) := Eπ

[
∞∑
t=0

γtrt

∣∣∣∣∣ s, a
]
. (2.2)

Finding the optimal value function V ∗ or action-value function Q∗ induces an op-

timal policy. To acquire π∗ from Q∗, an agent may simply take the action with the max

Q-value at any state. From V ∗, the agent need only perform a greedy one-step search over

subsequent states and take the action corresponding to the max value found. Both V ∗ and

Q∗ adhere to Bellman optimality and may be updated via Bellman backups according to

the rule:

V ∗(s) = max
a∈A

∑
s′

T (s, a, s′)
[
R(s, a, s′) + γV ∗(s′)

]
, (2.3)

Q∗(s, a) =
∑
s′

T (s, a, s′)
[
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
. (2.4)

Value Iteration (VI). VI is one classic planning algorithm that computes the optimal

value function by applying the Bellman backup of Equation 2.3 to all states repeatedly

until the max change in value falls below some error threshold. VI converges to the
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optimal value function (assuming the MDP is finite and the threshold is low enough), but

is slow given that every iteration requires |S| backups [149].

Q-learning (QL). QL [167] is a standard RL algorithm that computes and converges

to Q∗ from an arbitrary initialization of Q(s, a) and a given learning rate α. It is an

“off-policy” approach in the sense that it can yield π∗ while following another π. Most

commonly, QL follows a policy employing the ε-greedy strategy, where an agent takes

a random action with some small ε probability and otherwise selects the action with the

maximum Q-value. For some number of episodes (or until convergence), a QL agent

selects an action according to its policy, obtains reward r and the next state s′, and then

computes the update:

Q(s, a)← Q(s, a) + α[r + γmax
a′∈A

Q(s′, a′)−Q(s, a)]. (2.5)

Transferability. The optimal policy, value, and action-value functions are specific to

the dynamics of the given MDP, with a recursively dependence on future states, transition

probabilities, and reward schedules. Thus, they are not inherently transferable to other

MDPs, making generalization to new tasks challenging. Throughout this dissertation I

aim to tackle this problem, and discuss the creation of abstractions and knowledge rep-

resentations that facilitate transfer of plans and learned behaviors. In the next chapter, I

discuss previous and related work on dealing with transfer in RL.
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2.1.1 Object-Oriented Markov Decision Processes

The object-oriented Markov decision process (OO-MDP) is a factored state space vari-

ant of the MDP where states are composed of objects whose behavior is defined by the

instantiated values of their attributes [36]. In general, MDPs with a factored state space

represent states by vectors of factors; OO-MDPs encode basic domain knowledge to en-

force greater structure over the allowed values of factors.

Definition 2.4 (Object-Oriented Markov Decision Process). A finite object-
oriented Markov decision process (OO-MDP) is defined as:

M := 〈S ← {C,O,B,D,M},A, T, R, γ〉,

containing the same components of an MDP (Definition 2.1), except that the set
of states implicit, generated from the relations among a set of classes C, a set of
objectsO, a set of attributes B, a set of attribute domains D, and a set of attribute-
valuesM.

A given OO-MDP has n objects, O = {o1, . . . , on}. Each object is a member of

some class, ∀ o ∈ O, Mem(o) = C ∈ C. Every C defines the template of attributes that

its member objects possess. Thus, C is the set of k attributes for that class, Att(C) =

{C.b1, . . . , C.bk} ⊆ B. An attribute has its own domain bounding the possible attribute-

values that may be assigned to it, Dom(C.b) = {m. . .} ⊆ M. Thus, the set of attribute-

valuesM simply expresses the space of all possible factor values. At a specific time-step,

an object has a realized object-state, the list of all current attribute-values it possesses (one

for each attribute of its class). An OO-MDP state is vector of factors, consisting of the

union of every object’s object-state, s = ∪ni=1OBJECT-STATE(oi).

The main benefits of the OO-MDP formalization are that it allows more general,

21



expressive, and easily extensible definitions for decision-making problems. OO-MDPs

may specify class-level relations, or a set of predicates p ∈ P : s ∈ S → {0, 1} that

provide higher-level information such as relations among objects. In this sense, the OO-

MDP grants a natural way of describing environments as a collection of objects, their

properties, and their relations. Additionally, objects or attributes can easily be added or

removed, making the the OO-MDP formulation ideal for state abstraction.

2.1.2 Function Approximation

RL has been employed notably in learning to play games such as Backgammon [157],

Atari video games [113], and Go [140], achieving human and super-human levels of

performance on them. In each of those cases, the technique of function approximation

was key to addressing the issue of generalizing experience over the immense state space

of the games. When the number of possible states is on an order far exceeding what

can be recorded feasibly, a standard approach is to approximate the value or action-value

function. The linear form of value function approximation (VFA) follows:

V̂θ(s) = θTφ(s) and Q̂θ(s, a) = θTφ(s, a). (2.6)

In VFA, the core mechanisms are a vector of weight parameters θ and a vector of basis

functions φ(s) or φ(s, a) [49]. The basis functions serve as the set of features repre-

senting a given state; an overcomplete basis, where the set of vectors would still form a

basis if one was removed, can offer more expressive function approximation. Rather than

computing and storing the exact value or action-value for states, algorithms maintain this
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weight vector. Weights are learned over time to approximate the relative contribution of a

corresponding feature to the value or action-value function. Bootstrapping is a principle

that has algorithms use their immediate predictions as the target, then sample and correct

their estimates by adjusting them in the direction of the sampled value (thereby learning

and improving while operating). In the bootstrapping technique of most standard tempo-

ral difference algorithms such as VI and QL, the agent observes a transition tuple at step t,

(st, at, rt, st+1). It learns the approximation by computing gradient descent (to minimize

the cost) via parameter-wise Bellman updates:

θt+1 = θt + αt
(
rt + γV̂θt(st+1)− V̂θt(st)

)(
∇V̂θt(st)

)
, (2.7)

or

θt+1 = θt + αt
(
rt + γmax

a∈A
Q̂θt(st+1, a)− Q̂θt(st, at)

)(
∇Q̂θt(st, at)

)
, (2.8)

for iteration t, where αt is the learning rate, and rt is the reward from the transition.

These RL methods are in essence performing supervised learning where transition tuples

are data and the value or action-value are the target signal [48]. Temporal difference

algorithms such as Q-learning and SARSA with function approximation have been proven

to converge when certain conditions are met [109, 161].

Common forms of featurization for linear value function approximation include

tile-coding (also known as cerebellar model articulator controller, CMAC) [5], polyno-

mial basis, or Fourier basis functions [84]. For example, given state vector x̄ = [x0, x1], a

degree-2 polynomial basis function expansion would be φ(x̄) = [1, x0, x1, x0x1, x
2
0, x

2
1].

Tile-coding approximates functions by creating discrete “tiles” over continuous variables,
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often applying multiple, overlapping offset tilings. The features are then represented as a

high-dimensional but sparse binary vector, with elements set to one to denote tiles con-

taining the featurized variable. A downside to tile-coding is that the range of variables

must be known beforehand, and it requires some engineering to select the appropriate

degree of granularity and overlapping, although adaptive versions exist [169]. Alternate

schemes for featurization include online construction of features. One such example is

incremental feature-dependency discovery (iFDD), which gradually expands the space

of features. In iFDD, new features are constructed as combinations of existing features.

The temporal difference error of potential new features is assessed, and they are added to

feature space once their value surpasses some given threshold [50]. The concept-aware

feature extraction outlined in Section 5.1 is adaptive in a way similar to iFDD, but it is

not incremental and does not assess utility of concepts before adding them to the feature

space. Adaptive methods such as iFDD are more expressive, leading to useful feature

discovery, faster convergence, and better policies especially in larger domains [51].

2.2 Multi-Armed Bandits

Closely related to Markov decision processes is the sequential decision-making problem

commonly referred to as multi-armed bandit (MAB). This name refers to the colloquial

epithet of slot-machines: one-armed bandits. MABs present a “slot machine” with n

arms (hence, multi), such that any given state has n actions, one for pulling each arm,

with reward determined probabilistically, conditionally dependent on the arm pulled. The

goal, then, is to find the optimal policy that pulls the arm with the greatest return. Central
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to the MAB problem is the core exploration-vs-exploitation challenge of RL. An agent for

MABs invariably requires some degree of sampling of each arm, to acquire knowledge

of the arms’ reward distribution. Ultimately, however, an agent should exploit. In the

simplest MAB tasks, this practice means committing to one action and only pulling that

arm; more complex behavior relies on probabilistic policies conditional on the state or

set of arms available. MABs can be thought of as a one-step MDP, with the crucial

element being that successive states do not depend on the previous ones. In other words,

there are no transition dynamics; states in MABs are selected randomly, arbitrarily, or

adversarially depending on the type of problem. In the minimal version of MABs, states

have no distinguishing features and may be ignored or considered identical, or they merely

specify which arms of the action set are available (if not all of them). Myriad extensions

to MAB exist, and I primarily focus on the case where states do differ, and the behavior

of arms and rewards depend upon them (see Section 2.2.1).

I present my framing of the general MAB problem as 〈S,A, R〉, with a set of states,

an action set (the arms), and a reward function. Generally, states are framed as origi-

nating from an adversary, either obliviously (selected at random) or by following some

agenda [87]. In the case that S = ∅, the reward function depends solely on the arms,

R : A → R. With states where some arms may be available at different times, consider

R : S × A → R such that this reward function R is undefined on any unavailable arm

a, as restricted by s. In experiments, an agent at time t observes a state st (if one exists)

and the set of available arms Ât ⊆ A. It then selects an arm at ∈ Ât, and observes

scalar reward R(st, at) = rt received from pulling at in state st. Altogether, multiple

executions yield a history of episode tuples of the form (st, at, rt). The notion of an
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action-value from RL is reused here as Q(st, at) = E[rt|st, at]. Likewise, the optimal

value is V ∗(s) = max
a ∈Ât

Q(st, a).

As with MDPs, performance can be measured by cumulative expected reward.

However, a more common metric is to compute a form of loss referred to as regret [87].

At a high level, regret is the difference between how well an algorithm might have been

expected to perform and how well it actually did perform. It is necessary to distinguish

between the single-step realized regret of a policy at time t, r̄πt , and the cumulative ex-

pected regret over a history of n episodes, R̄π
n. The immediate regret of policy π adheres,

in general, to the form R(s, π∗(s)) − R(s, π(s)). The expected single-step regret is de-

fined as r̄πt = Eπ[V ∗(s) − Q(s, a)]. Formally, this dissertation specifies cumulative total

regret as:

R̄π
n = Eπ

[
n−1∑
t=0

(
V ∗(st)−Q(st, at)

)]
. (2.9)

Therefore, R̄π
n captures how much the agent’s executed policy falls short of what it would

have seen had it followed an optimal policy. Under this definition, all regret is non-

negative. In plotting an algorithm’s regret, a linear trend indicates no learning has taken

place. Ideally, the results would be realized in a logarithmic or similar sub-linear pattern

for successful algorithms.

2.2.1 Contextual Bandits

The contextual bandit (CB) problem is a reframing of MAB to include a context, or ex-

plicit factored state, upon which the reward function depends. I define CBs in the same

framing as MABs, with the specification that states do exist, and contexts replace states
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in the previously defined equations. At time t, a context xt is a vector of features φ ob-

served from the underlying state st, such that xt = φ(st). Thus, regret is computed as in

Equation 2.9, just with xt in place of st. Generalization hinges upon this function approx-

imation and on modeling probability distributions in reference to the context’s features

(that is, the probability of observing reward given the arm and context). In particular, this

dissertation examines the stochastic linear bandits variation of contextual bandits [87].

Following the same linear function approximation discussed in Section 2.1.2 to represent

value, stochastic linear bandits approaches the probabilistic estimation of expected CB

reward, or action-value, for action at as:

Q̂(st, at) = θTatxt. (2.10)

Hence, the goal of CB algorithms is to learn parameters for each arm, θa, such that the

reward model for action a approaches the expected value of the true reward function

given that action, lim
t→∞

Q̂(st, a) ≈ E[R(s, a)|a], thereby facilitating the selection of ac-

tions to minimize regret. In literature, CB algorithms have found many practical uses,

especially in preference-based or personalized services such as determining web adver-

tisement placement or news article recommendations [90,176] and dynamic search [173].

A CB context contains features that characterize the different arms available. That

is, the state st contains the arms and any additional “side” information, such that φ is

the feature-map or state abstraction mapping those arms into the context, a vector of

perceptions. In this sense, an arm is like a class of an OO-MDP, where specific arms in

the context are like instances of objects in an OO-MDP state. Further, the features of the
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arms serve exactly as attributes of OO-MDP objects, meaning their instantiated values act

exactly as attribute-values.

One primary difference between the setup of CBs and traditional MDPs is that full

observability is typically not assumed. For example, arms may possess latent parameters

not specified in the context which nevertheless determine their respective reward distri-

butions. Alternatively, an unobserved “label” may be attached to the arms, and the agents

goal could be to select an arm of the appropriate label given the observed context. This

formulation shows how one might consider CB problems as occupying a place between

supervised learning and MDPs: a CB agent is making decisions, but doing so by a kind

of classification of contexts given the arms available [72].

CB-learning algorithms differ from standard RL ones such as QL in that they inher-

ently require generalization across contexts. That is, the dynamic programming methods

for MDPs rely on the Bellman update, where information about the value of one state

propagates to others (due to the recursive definitions of value and action-value functions).

Since successive contexts do not depend on previous decisions, a CB algorithm cannot

deploy this approach. Contexts can be thought of as a row in a data set, as in supervised

learning, except that the signal observed corresponds only to the arm pulled. Crucially,

the counterfactual reward, or “what would have been received pulling a different arm,” is

unknown in the MAB problem, making loss much harder to assess than the error in clas-

sification tasks. Therefore, CB algorithms must combine generalization across contexts

with robust exploration techniques.

In deciding which arm to select under uncertainty, the standard solution is the meta-

algorithm known as Thompson sampling (TS) [158]. In TS, the algorithm applying it
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is assumed to possess some mechanism for approximating the posterior probability (of

policies or a reward model, in CB), whether through a frequentist or Bayesian perspec-

tive. Succinctly, TS simply samples parameters from the posterior distributions (one cor-

responding to each arm), selects the best arm based on the expected reward given the

context (with respect to the conditional probability of the parameters), and updates its

posterior based on both the parameters used and the reward received. For this reason, TS

is sometimes referred to as Posterior Sampling. TS is notable in having been developed

in the early twentieth century, only to languish until this century, becoming the de facto

exploration method for bandits over the past fifteen years [134].

Another common approach to exploration applies the principle of “optimism under

uncertainty.” This strategy treats unknown or unmodeled processes as optimal, thereby

greatly encouraging the underlying algorithm to explore them [87]. The Upper Confi-

dence Bound (UCB) meta-algorithm is an application of this principle for CB algorithms.

Optimism guides action selection in UCB: an overestimation of the unknown expected

reward for each arm is maintained, and the arm with the highest estimate is selected.

For MABs generally, UCB updates a confidence interval ct,at at each time-step such that

|Q(st, at)− Q̂(st, at)| < ct,at is likely. UCB recommends the next action by computing:

at+1 = arg max
a∈At+1

(Q̂(st, a) + ct,a). (2.11)

Under the assumptions of linear stochastic bandits, the algorithm employing UCB

is referred to as LinUCB [87, 90]. In this case, UCB must compute a confidence region

over parameter space for each arm’s model. Given parameter vector θt with m features,
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the confidence region is a subset of parameter space, Ct ⊂ Rm. The purpose of Ct is to

bound the space of possible θ such that the optimal values, θ∗, are contained. As samples

are collected by the CB algorithm, the confidence region shrinks and the probability that

θ∗ is within it increases. A least squares method is needed to determine the confidence

intervals surrounding the estimated parameters. For least squares, LinUCB applies ridge

regression given a batch data set (Xa, ρa) for each action a, where context matrix Xa is

n × m (n contexts each with m features), and ρa ∈ Rn is a vector of rewards observed

when arm a was pulled in the corresponding context of Xa. Following the standard form

of ridge regression, the parameters of arm a are estimated as:

θa = Y −1
a XT

a ρa, (2.12)

with matrix Ya = XT
aXa + Im using the m ×m identity matrix Im. It has been proven

in RL literature that the ridge regression of Equation 2.12 probabilistically satisfies an

inequality [166]:

|Q(st, at)− Q̂(st, at)| = |E[rt|xt, a]− θTa xt| ≤ α
√
xTt Y

−1
a xt, (2.13)

to some desired degree of uncertainty, α = 1 +
√

ln (2/δ)/2, with a tuneable probability

of error δ > 0 such that Equation 2.13 decreases in probability as δ increases [90]. The up-

per bound of this inequality expresses the confidence region precisely as α standard devi-

ations, such that LinUCB selects the best arm as in Equation 2.11 with ct,a =
√
xTt Y

−1
a xt.

In summation, LinUCB models the expected reward of each arm given a context while

30



maintaining an upper confidence bound estimate of each arm’s model, following the prin-

ciple of optimism under uncertainty by selecting the arm that appears best with respect to

the current context.

2.3 Formal Concept Analysis

Formal concept analysis (FCA) is a mathematical technique based on information theory

and order theory that has been growing in popularity in recent years [123, 124]. FCA

provides a means of extracting knowledge structures from data in the form of formal con-

cepts (paired sets of objects and attributes). Taken together, the concepts extracted from

a set of data yield a partial ordering called a concept lattice that captures a hierarchical

relation of concepts from the most abstract to the most specific.

A formal context is a triple (G,M, I), with G the set of objects, M the set of

attributes, and an incidence relation I : G ×M → {0, 1} such that I(g,m) = 1 when

object g ∈ G possesses attribute m ∈ M, else I(g,m) = 0. A context can commonly

be represented as a binary matrix where rows are the objects, columns are attributes, and

each element indicates the presence or absence of an attribute in the respective object.

Let us define the concept-formation operators ↑ and ↓ to provide a way of mapping from

objects to attributes and vice versa. Given a set of objects A ⊆ G and a set of attributes
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B ⊆M:

A↑ = {m ∈M | ∀a ∈ A, I(a, b) = 1} (2.14)

and

B↓ = {g ∈ G | ∀b ∈ B, I(a, b) = 1}. (2.15)

For an object g ∈ G, {g}↑ is the set of all attributes present in g; for an attribute m ∈ M,

{m}↓ is the set of all objects possessing m. Then, a formal concept is defined from

(G,M, I) as a pair of sets (A,B) such that A = B↓ and B = A↑. That is, for a formal

concept (A,B), A is the set of objects possessing all attributes in B, and likewise B is the

set of attributes shared by all objects inA. A is called the extent, andB is called the intent.

The number of objects in the extent is referred to as the support of the concept. Another

way of viewing formal concepts is as biclusters that are maximally inclusive on both the

object and attribute sets [164]. Multiple algorithms exist for mining formal concepts from

a context, such as FASTCLOSEBYONE and IN CLOSE2 [7].

Obtaining the formal concepts from a context inherently yields a partial ordering

called a concept lattice, B(G,M, I) with partial ordering ≤ of subconcepts to supercon-

cepts (〈B,≤〉 is a complete lattice). In particular, formal concepts are ordered from the

unit element (the top >, a paired set of all objects and any attributes found in all ob-

jects) to the zero element (the bottom ⊥, all attributes and any objects that possess all

attributes). Hence, ⊥ ≤ >, and when a concept (A,B) ≤ (C,D) one says (A,B) is a

more specific subconcept of the more general superconcept (C,D). A lattice can be vi-

sualized graphically where each node is a formal concept and the arcs express the natural
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sub- and super-concept relationships. Objects are inherited down from the unit concept;

attributes are inherited upwards from the zero concept. That is, for any node in the lattice,

the union of its parents’ attribute sets is a subset of its own attribute set, and the union

of its children’s object sets is a subset of its own object set. The unit and zero concepts

can be viewed as complementary: the top contains all objects, the bottom contains all

attributes. Moving down a lattice leads to more specific, reified concepts, while moving

up leads to more abstract ones.

One important property is that the mapping that results from composing the concept-

formation operators, mappingA→ A↑↓ orB → B↓↑, induces a closure operator. The clo-

sure operator can find the least extent to which an object g belongs, such that ({g}↑↓, {g}↑)

is the most specific concept containing g, which is called the object concept. Similarly,

the attribute concept of attribute m is the most general concept containing m in its intent,

({m}↓, {m}↓↑). Object concepts are useful for interpreting anomalies since their extent

contains grounded objects, so they provide a starting point to begin considering more

abstract groupings of objects and attributes.

As an example of FCA capturing natural hierarchies of objects, consider the formal

context in Table 2.1, a data set of species and their attributes (the Hasse diagram of the

concept lattice built from it is shown in Figure 2.1). The lattice includes many seman-

tically meaningful groupings. For instance, dogs and cats group together as having four

legs, and both group with whales as having lungs and vertebrae. Lobsters and ants are

grouped as invertebrates, and all group into the unit concept (where no attributes differ-

entiate them), whereas none would group in the zero concept (as no species possesses all

possible characteristics).
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name has- four- has- has- invertebrate terrestrial aquatic
legs legged lungs vertebrae

dog 1 1 1 1 0 1 0
cat 1 1 1 1 0 1 0
whale 0 0 1 1 0 0 1
lobster 1 0 0 0 1 0 1
ant 1 0 0 0 1 1 0

Table 2.1: An example formal context of animal species and attributes.

Figure 2.1: An example Hasse diagram of a concept lattice derived from Table 2.1. Nodes
in the graph are formal concepts. Objects are inherited down from the top (root concept),
and attributes are inherited in reverse from the bottom concept. Thus, attribute labels (in
gray) are attached to the highest concept for which their respective attribute is a member,
and object labels to the lowest. For example, the leftmost child of the top concept in the
image is the concept of

(
{ant, lobster, dog, cat}, {has-legs}

)
, which one might semanti-

cally define as “legged animals.” The leftmost child of that concept in the image is
(
{ant,

lobster}, {has-legs, invertebrate}
)
.
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FCA is most commonly used for mining static data sets such as text corpora for

semantic relations. This dissertation presents a first approach to employ FCA interac-

tively in an agent-based decision-making context. The motivation for conveying agent

knowledge through formal concepts is that they are descriptive yet small and hierarchical,

arising simply from a data set itself. Moreover, a lattice provides a type of natural unsu-

pervised clustering of objects in an agent’s world, forming a kind of ontology, where its

concepts are informative groupings of perceptions and components of the world that can

be used to reason and learn.
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Chapter 3: Related Work

This dissertation considers new methods for abstract decision making, with a focus on

adaptability, especially the problems of generalizing behavior over time and reasoning

about anomalies through concept formation. I aim for a method that addresses the prob-

lem holistically, with a combination of statistical methods and logical formalisms. To

that end, relevant work is drawn from a variety of areas to show this work’s connection

to broad but related themes of generalization that it seeks to unite. Thus, the following

sections should be regarded with the long-term goal of achieving more general, adaptable

agents capable of learning and using abstract representations of knowledge.

3.1 State Abstraction

The challenge of scaling of algorithms for large RL domains (where the set of possible

states is extremely large or unbounded) is an active area of current research. Following

from the theory of Li et al., exact state abstraction is categorized as one of five classes

of aggregation at varying levels of granularity: model-irrelevance, Qπ-irrelevance, Q∗-

irrelevance, optimal action irrelevance, and pi∗-irrelevance [92]. The purpose of grouping

states together is to reduce the size of the state space while still abiding by the global

reward and transition probabilities. The net result of abstraction is that unwieldy problems
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are made more tractable, and it was proven that Q-function convergence holds for some of

the finer classes of abstraction, and that coarser ones still permit guarantees for efficient

planning. Although abstraction may help, transfer of knowledge and experience is not its

explicit end-goal. Abstraction techniques such as state aggregation are often combined to

do hierarchical RL, where a goal is decomposed into smaller, repeatable subtasks.

One perspective on concepts is that they achieve both abstraction and generaliza-

tion, as opposed to (or in addition to) state aggregation-based abstraction alone. Abstrac-

tion is a process that “changes the representation of an object by hiding or removing less

critical details while preserving desirable properties. By definition, this implies loss of in-

formation,” whereas generalization is a process that “defines similarities between objects”

but also “does not affect the object’s representation. By definition, this implies no loss

of information” [125]. Related topics are domain reduction (grouping objects), hiding

(removing objects), and co-domain hiding (selective attention), each of which concept-

based abstraction performs at several progressive levels of granularity. Ponsen et al. take

knowledge transfer as a form of generalization, citing the methods of Q-value reuse, fit-

ted Q-iteration, and region transfer, and discussing representations for transfer including

relational options, agent-spaces, and finite-state machine-based strategies [125]. UCAGG

adaptive aggregation uses epsilon-bounded state aggregation (based on confidence esti-

mate of regret). Ortner et al. discuss approximate abstractions, determining abstract states

either by taking the average of transition probabilities and of rewards of ground states, or

by using an exemplar ground state as reference [117]. Proximity-based non-uniform ab-

stractions for approximate planning offer a significant alternative in using non-uniform

“worldview” states (as opposed to uniform state aggregation). Worldviews work on a
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case-by-case basis for each dimension, either leaving the feature concrete or abstracting

(removing) it. Baum et al. introduce the Ostrich effect where an agent over-estimates a

value by wrongly incorporating good information in a region (or vice versa), which could

affect many forms of generalization and transfer, including concept-based ones [19].

3.2 Transfer & Lifelong Learning

Transfer learning concerns generalization of machine learning, where knowledge or ex-

perience gained solving one source task is transferred to a new (often related) target task.

In this dissertation, I consider RL and planning in particular, where adapting to novel

domains often means transferring skills, beliefs, or other representations of knowledge.

Transfer learning under those paradigms centers on reusing behaviors from some solved

MDPs to initiate good prior beliefs and speed learning in new domains. Examples of

reusable knowledge include policies, partial policies [121], discovered options (tempo-

rally extended actions) [23, 159], and action priors [2].

Several subproblems were identified in a survey [154] for the general goal of trans-

fer learning in RL which most approaches must tackle to some degree. One issue is that

of allowed task differences, or the question of by how much the agent, number of objects

in the state, and parameters of the task may vary among sources and targets. Source task

selection is the subproblem of finding and applying an existing relevant source. A re-

lated issue is task mapping, determining how to map actions or other MDP components

from one to another. There is also the question of transferred knowledge, or picking the

representation and granularity of knowledge to store and apply (transition tuples, options,
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shaped reward structure). Another question is that of allowed learners to compare against,

as the knowledge used by TD, policy search, case-based, or other methods can differ

greatly. Finally, various metrics could be used to evaluate the performance of transfer

learning. Proposed measurements for intra-domain transfer include jumpstart (increased

initial performance), asymptotic performance (increased final performance), total reward,

the transfer ratio of the area under learning curves, and the task learning time (i.e., when

it reaches a threshold of performance) [154].

One significant challenge of transfer learning is the notion of negative transfer,

where applying knowledge actually hinders the efficiency or quality of a solution. Con-

ceptually, transfer learning inherently encodes bias toward certain behaviors or beliefs.

With this knowledge, the agent expects the world to be a certain way, and should reality

defy expectation, then an agent may take longer to find or converge to a solution than if

it had no prior knowledge at all. Techniques to mitigate negative transfer often incorpo-

rate task structure to determine how to perform no worse than an agent starting from an

uniformed state.

Under the umbrella of transfer learning reside the subproblems of learning from

demonstration and lifelong learning. Lifelong learning is the challenge of solving a se-

quence of tasks by one agent over an extended lifespan, as opposed to training one agent

to one task. This goal is clearly relevant to robotics and more general AI, where it is too

costly and inefficient to train an agent and then dispose of the knowledge gained. In the

larger context of this dissertation, I am seeking to make agents build on experience in new

environments; anomaly reasoning through concept formation aims for this directly.

Recent work has argued for more interpretable transfer in RL, leveraging an object-
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based framework similar to OO-MDPs and using similarities to perform mappings from

one set of object classes to another [129]. Another direction has focused more on advice

frameworks, where learning is transferred in a multi-agent learning scenario, or from

teachers to students [27, 29, 30]. Object-Focused Q-Learning (OFQL), while similar to

the definition of OO-MDPs, differs in that each pairing of object-agent is treated as its

own sub-MDP, with managed action risk. Q-values are computed for each pairing and a

global Q-function estimate is taken from the maximum Q-value across the object pairs.

Cobo et al. prove convergence to an optimal solution [26]. In a manner similar to OFQL,

CLASSQ-L uses abstraction over object classes to compute Q-values. It uses two-phase

learning, first executing an episode to completion, then performing a batch update of the

Q-table; learning is generalized over the abstract classes [66].

3.3 Concept Formation

Concepts as a basis for knowledge, representation, and reasoning have a long history of

study in the field of artificial intelligence [42]. Concept formation and learning are based

in cognition and psychological models of human understanding. Concepts themselves

vary in definition but usually hold to the idea of describing a set of attributes, features, or

rules that are true for all members in a related set of examples called objects, instances,

or entities.

At its fundamental level, concept formation is the idea of intelligent processing of

percepts (input to sensors) to concepts (abstract representations) to actions (output from

actuators). This description is purposefully general; it can be applied and used in various

40



types of settings, including supervised learning, clustering, case-based reasoning, plan-

ning and RL. Most commonly, observations from the environment are fed into a learning

algorithm which is combined with a knowledge base. Input percepts are interpreted as

concepts through their membership with certain (potentially dynamic, probabilistic, hier-

archical) categories or relations. Crucially, learning is incremental. Concepts are created,

grow, split, and change as learners make new observations. Thus, well-studied concept

learning algorithms include decision trees (ID5, EPAM, Cyrus) and probabilistic cluster-

ing (COBWEB). Various schemes have been used for knowledge bases, including rules,

formal logic, and the structures produced by learners themselves (as with the categories

identified by COBWEB) [42].

From psychology, there are three views of concepts: axiomatic, prototype, and

exemplar ones [106]. For artificial intelligence algorithms, axiomatic concepts are defined

by a set of formal conditions (having to satisfy necessity and sufficiency). Prototype

concepts are less restrictive, only specifying properties that need to be satisfied (a ball

will have a shape, color, and material). Exemplar concepts are abstractions demonstrated

by archetypal examples – an algorithm that learns to classify different dog species is

identifying those categories as exemplary concepts. The generalized context model is

an implementation of exemplars in memory, with similarity being a distance measure in

psychological (concept feature) space.

Objects can be ordered, compared, and grouped by their concepts in an abstract

space. One approach to this abstraction is a “version space” of hypotheses (concepts or

constraints that apply to groups of objects). Version spaces are used to transfer from mod-

els at an object level to a more general model, incrementally learning concepts organized
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into a hierarchy of specificity. That is, the specific model is generalized from positive

instances, while the general model is specialized from counterexamples, until a bridge

is found between them. Version spaces can aid classification of unseen data and pro-

vide an inductive leap that helps bridge machine learning with more formal, logic-based

reasoning [112].

Recent work in concept formation has focused on leveraging neural architectures

to extract features and perform one-shot learning. Where traditional classification takes

many examples to learn a few classes, one-shot learning is the challenge of learning many

classes without supervision from few examples. This goal aligns with human learning

better than standard supervised learning. For example, it would not take many examples

for someone who has never seen a banana before to learn that concept and apply it to any

new example they may encounter, but most machine learning algorithms would need hun-

dreds to thousands of examples. One paper achieved human-level learning of concepts on

Omniglot, a complex data set consisting of thousands of types of handwritten characters

(some real, some artificial) for which there are only tens of examples for any given charac-

ter. They used Bayesian program induction to capture the structural composition of visual

concepts (parsing the direction of strokes and location of joints). Additionally, since their

technique captures a joint probability, they model concept membership probabilistically

and can generate valid, novel examples of the learned classes [86].

Another approach to incremental human concept learning, TRESTLE, takes a more

compositional approach to concepts, performing feature extraction to parse a scene and

determine the relational structure of objects. TRESTLE hierarchically organizes proba-

bilistic concepts that maintain the counts of member objects and attributes. The main al-
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gorithm for structuring the hierarchy is COBWEB, for which a categorization tree is built

(by creating, updating, merging, and splitting concept nodes) using the category utility of

concepts given their parents. TRESTLE was evaluated in both a supervised and an unsu-

pervised setting and approximated human-level performance at identifying and grouping

concepts for RumbleBlocks, an interactive physics-based construction game [99]. TRES-

TLE compares its evaluation with a related approach, conceptual feature extraction (CFE),

that discretizes state space, generates a grammar of components and their relations, and

parses the discretization into a feature vector [58].

3.4 Memory

Representing and maintaining memory for sequential decision making and other temporal

learning problems is an open challenge. In brief, memory is the capacity to read and

write information over time. Memory can serve either as a more long-term knowledge

base (for instance, of learned concepts), or to preserve a more short-term notion of the

immediately preceding states, context, and surrounding. Addresses are a common feature

of memory, where an address is an index to a specific entity in memory. Notions of

locality and spatiality are also included in some models of memory (such as the position

of a Turing machine’s read-write head along a tape). Associated memories, for instance,

can be found in a local neighborhood of memory space, or contain address references to

similar memories. Memory has a long history of study in the fields of computer science,

artificial intelligence, and cognitive science [61].

One mechanism for recording experiences (including learned concepts) is sparse
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distributed memory (SDM) [73]. SDM acts as a random-access memory that has three

registers, one each for addressing, reading, and writing. Percepts are encoded as words

and stored in counters addressed in an expansive binary space (memory). Addresses,

point locations in memory, are sparse and distributed to provide coverage. Associated

memories can be measured as lying within some given Hamming distance radius. When

input percepts are written to memory, they are indexed to a point in memory space but

not recorded there exactly. Instead, all addresses are considered, and any within a given

distance threshold to the indexed point are activated. The data counters at these indexed

memories are incremented. Hence, observations are distributed over regions of memory

(stored sparsely). Reading from memory takes a sum over the sparse neighborhood in

memory space. If the sum of activations passes a gating threshold, non-zero output is

passed to an out register. In effect, SDM learns an encoding and reconstruction of input,

similar to neural networks such as autoencoders.

SDM has been implemented as a function approximation technique more com-

monly referred to as “Kanerva coding” [172]. As differentiated from tile coding and

basis function-based function approximation, SDM scales well since its computational

complexity depends only on the number of addresses in memory, and not the size of the

state-action space. Weight parameters are learned for addressing; linear value function

approximation simply takes the sum of weighted activated addresses.

Recently, research into deep neural architectures has investigated the inclusion of

a memory storage component while learning. Examples include neural Turing machines

(NTM), differentiable neural computers (DNC), memory-augmented neural networks (MANN),

and recurrent entity networks (EntNet). The NTM recreates a Turing machine via a neural
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network and includes readable and writable memory [56]. A DNC [57] extends NTMs

with a recurrent network controller that governs the contents of a write head and two read

heads that interact with a separate, external (differentiable) memory component that also

has temporal links to preserve a kind of state of recent updates. The DNC architecture was

able to learn arbitrary graph structures, including the London Metro, and answer questions

about how to traverse from one station to another. In an RL setting, a DNC was able to

solve the classic “blocksworld” stacking task, learning to encode temporal subgoals into

memory. MANNs tackle generalization by considering the one-shot learning case, where

memory is, again, an external module that is written to and read from [136]. EntNets

maintain a dynamic, gated memory structure that has its own trainable parameters; its

success on entity resolution in question-answering domains indicates that parameterized

memory storage can improve tracking complex world states [63].

3.5 Case-Based & Analogical Reasoning

Case-based reasoning considers memory as a set of learned “cases” that may be applied

and adapted to a new problem being faced. A typical case-base reasoning workflow,

given some new problem, is the sequence of processes: retrieval, adaptation, evaluation,

and storage. Adaptation fits previous cases or rules, through the application of a model or

heuristics, to the new problem. For evaluation, the proposed solution must be simulated

or executed, recording the results. Once the new problem is solved, it is stored as a case.

Storage also concerns determining proper indexing schemes for fast retrieval of cases.

Failures might also be stored to help recognize such cases in the future.
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Analogical reasoning, as a subgoal of case-based reasoning, considers the corre-

spondence problem, or mapping from a source entity to a target. It performs transfer

learning by selecting known cases (or objects), and can employ concept formation or

other representations to express similarity. SDM is an example of a memory formaliza-

tion that can achieve generalization through learned analogical mappings [37].

3.6 Anomaly Detection

Anomaly detection focuses on the identification of outliers or patterns of data that are

unusual with respect to expected observations. Anomalies as defined for this work are

a subset of this more general definition. Commonly, input data is formulated as objects

(instances, rows) with attributes (features, columns). From a given data set, an algorithm

seeks to find anomalies described by one of three categories. Point anomalies are anoma-

lous objects with respect to an entire data set, and they can often be identified as residing

in a sparse or low-populated region of feature space. Contextual anomalies are objects

that are anomalous only under certain circumstances, called a context, which is most often

used for time-series data, or domains where the neighborhood of feature space around an

object should be considered in determining its degree of normality. Collective anomalies

are sets of objects that, together, correspond to an anomalous event with respect to other

data. For example, some word bi-grams may not be unusual when observed individually,

but their co-occurrence may be anomalous. Anomaly detection is broadly applicable to a

variety of fields including medicine, text and video analysis, intrusion and fraud detection,

and financial forecasting [25].
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3.7 Concept-Based Learning

Combining concept learning in a decision-making context has been explored in recent

papers. One approach examined concept discovery in a robotics scenario using incremen-

tal graph-based object-relation extraction to create structural concepts. Learned struc-

tures were combinable graphs of objects and their relations such as “object-in-room” or

“behind-door” for a robot exploring an office environment. The result is that a reinforce-

ment learning agent is able to find simple and hierarchical concepts to better explore and

transfer knowledge gained from solving tasks [156]. Another approach focused more

on learning functional concepts for knowledge transfer in RL. Samples from perceptions

map to points in an agent’s “function space.” Functional concepts, express clusters of

these points that influence an agent’s actions. For transfer, a source agent converts vec-

tors of Q-values into functional concepts (clusters) that a target agent can use to speed

learning [115].
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Chapter 4: Reasoning about Anomalies

4.1 A Framework for Anomaly Reasoning

I define anomaly reasoning as the ability to recognize and react appropriately to unfa-

miliar objects, with respect to an agent and its environment. Though broad in scope,

I decompose anomaly reasoning into three distinct, successive parts: the identification

of an anomaly, interpretation of it, and the adaptation to it. Identification encompasses

extracting features and segmenting objects from perceptions to detect any anomaly. In-

terpretation projects an identified anomaly into a (potentially learned) internal concep-

tual model of the world. Finally, adaptation determines which aspects of the interpreted

anomaly are most relevant to the agent’s current context and what subsequent decisions

are most suitable. While solving anomaly reasoning altogether is a difficult though worth-

while aim, I take each subproblem individually, to be addressed separately, and ultimately

integrated into a more cohesive pipeline. Such a framework is summarized in Table 4.1.

4.1.1 Identification

The process of anomaly identification consists of parsing objects from observations and

using domain knowledge to find anomalies in this context. The input is a vector of percep-
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1. Identification

• RECOGNIZE(~xt)→ Ot
• DETECT(K,Ot)→ OAt

2. Interpretation

• CONCEPTUALIZE(Ot)→ Bt

• STORE(K,Bt)→ K

• ABSTRACT(~a,K)→ C~at

3. Adaptation

• HIGHLIGHT(K,C~at ,Ot)→ ~h~at

• EMPHASIZE(~a,C~at ,
~h~at )→ ~e~at

• ADAPT(K,~a,C~at ,
~h~at , ~e

~a
t ,Ot)→ α

• From decision based on α, obtain re-
sulting feedback ρ (error, reward)

• UPDATE(K,α, ρ)→ K

I Input: perceptions, ~xt, knowledge K

B the set of objects (context)

B the anomalies, a subset of objects

I Input: objects Ot, anomalies OAt

B the set of concepts (a lattice)

B expanded domain knowledge

B the set of concepts for anomaly ~a

I Input: concepts from all anomalies, CAt

B a vector of concept weights

B a vector of attribute-value weights

B the adaptation, an abstract state, ac-
tion, or reshaping of perceptions
that reduces uncertainty

B updated knowledge, based on the
adaptation and the decision’s result

Table 4.1: Summary of a pipeline for anomaly reasoning.
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tions ~xt at time t along with some knowledge baseK, and the output is a set of anomalous

objects OAt . In the language of anomaly detection literature (see Section 3.6), these ob-

jects are contextual (conditional) anomalies, with the current context Ot.

The domain knowledge K is used by the agent to interpret anomalies. K could be

static (for instance, if dealing with anomalies in text,K may be an ontology like WordNet)

or learned incrementally as the agent makes decisions and observes new states, which is

how the solution is framed, storing and updating behavioral information at concept in

a hierarchy. For this implementation, K is a sparse memory containing concept lattices

that are abstracted and stores behavioral information indexed by binary vectors of concept

intents (the encoding of attribute-value sets).

4.1.1.1 Object Recognition

In keeping with the principle of a general framework that could potentially be imple-

mented in various ways, I explicitly include recognizing objects as the first step in iden-

tifying anomalies. Anomaly reasoning makes only the assumptions that agents receive

observations of their environment, irrespective of the form those perceptions may take,

and that the agent can convert those observations into object-based representations. The

input is a vector of perceptions at the current time, ~xt, and the output is a set of objects,

Ot.

From the true state of the world st at time t (as in an MDP environment), I define

the agent’s observation of st as a vector of n features ~xt = 〈x1, x2, . . . , xn〉. Observations

are then processed through an object recognition function into a set of objects, RECOG-
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NIZE(~xt)→ Ot.

Following from the OO-MDP formulation, states are sets of instantiated objects

where an object is a list of assignments to attributes called attribute-values. Without loss

of generality, all objects can belong to the same class C consisting of the full space of m

attributes, C = 〈C.a1, C.a2, . . . , C.am〉. Every attribute has its own domain of possible

attribute-values, Dom(C.aj), with some special “null” attribute-value ∅ that denotes the

absence of the attribute for the given object. Thus, each object ~oi ∈ Ot is a vector of

instantiated attribute-values, ~oi = 〈vi,1, vi,2, . . . , vi,m〉.

The entire set of objects can be represented as a matrix

Ot = (vi,j) =



v1,1 v1,2 · · · v1,m

v2,1
. . . ...

... . . . ...

vn,1 · · · · · · vn,m


,

such that vi,j is the attribute-value of attribute cj for object ~oi. An OO-MDP state maps

directly into this representation. Simultaneously, Ot can easily be binarized and serve as

a formal context from which a concept lattice can be constructed.

To apply FCA, let us define Mt as the set of all µt possible attribute-values ever

observed up to time t, so Mt = 〈v1, v2, . . . , vµt〉. The object set is re-represented as a

formal context (binary matrix)Ot = (bi,k) such that bi,k ∈ {0, 1} and bi,k = 1 when object

~oi has an attribute set to attribute-value vk, and bi,k = 0 when the object either lacks the

attribute or the relevant attribute is not set to vk. To capture uncertainty, bi,k = 0 is also
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used when the presence of vk is unknown. With this interpretation of an OO-MDP, the

incidence of objects and attribute-values is easily induced.

Note that this formulation can grow dynamically and is robust to new objects and

attribute-values. A canonical ordering Mt of all observed attribute-values up to time t is

preserved. For instance, if a new attribute-value v is observed at time t, it is appended to

Mt (in parallel, Mt = Mt−1 ∪ {v}). Then Ot will simply have an additional column.

If necessary, all past O matrices could be updated immediately to this new attribute-

value space by appending a column of zeros, which is valid since no object among those

contexts ever possessed v.

This definition is left purposefully general, since the features may vary widely based

on the domain. For instance, if ~xt is an image, then RECOGNIZE may be an image seg-

mentation algorithm, each ~o would be a region or segmented object, and attributes could

be any recognized semantic properties (color, material, shape) or simply activation lev-

els from features extracted by a neural network. For a text corpus, if ~xt is a document,

then RECOGNIZE could be a topic modeling algorithm that extracts n-grams from a bag-

of-words model to function as the attributes for each recognized topic, ~o. Alternatively,

RECOGNIZE could find anomalous named entities or events among text passages.

4.1.1.2 Anomaly Detection

The next procedure is to detect anomalies among the object set given the agent’s domain

knowledge. This step is expressed as DETECT(K,Ot) → OAt , with OAt ⊂ Ot and K,

a knowledge base. Each anomaly ~a ∈ OAt is an object detected as anomalous given the
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current context of objects and existing domain knowledge. K may be derived from the

concept model learned over time by the framework (described in Section 4.1.2). The K

is left general here; some approaches to anomaly detection use an alternative, domain-

specific ontology.

For domains with no prior information given, such as for a planning or reinforce-

ment learning agent, every object may be considered anomalous until it reaches some

threshold beyond which it is considered “known.” This threshold may be described prob-

abilistically and compositionally in terms of concepts that have encountered and stored in

memory frequently.

4.1.2 Interpretation

For interpretation, anomalies are considered in context, mapped into abstract represen-

tations in conceptual space. The input is the context at the current time and the set of

detected anomalous objects, Ot and OAt respectively. The output given the context is,

for each anomaly ~a ∈ OAt , the set C~at of concepts formed from the anomaly. Each ~a,

interpreted as a set of concepts, is passed on to the following process which selects an

adaptation given all detected and interpreted anomalies.

4.1.2.1 Concept Formation

From the given context Ot, concepts are formed and stored in a structured representation

by CONCEPTUALIZE(Ot) → Bt, yielding a lattice that is a subset of all possible con-

cepts, Bt ⊂ C. Each c ∈ Bt is a concept defined generally (different representations
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of concepts could be used), and Bt captures some graphical or relational information

among them. For the remainder of this work I consider the FCA formulation of for-

mal contexts and concepts (as described in Section 2.3); however, other encodings or

representations for concepts could be used. CONCEPTUALIZE is implemented as some

concept-mining algorithm, and Bt is a concept lattice derived from Ot, or in FCA par-

lance, the lattice is the relation Bt(Ot,Mt, It) whereMt is the set of all attribute-values

and It : Ot ×Mt → {0, 1} is the incidence It(~oi, vk) = 1 when object ~oi ∈ Ot possesses

an attribute currently equal to attribute-value vk ∈Mt.

With Bt, a set of concepts is obtained: Bt = {(A,B) | A ⊆ Ot, B ⊆ Mt, A =

B↓ andB = A↑}. Optionally, a domain modelK is updated and retained, STORE(K,Bt)→

K. As with many implementation choices, there are multiple ways K might be imple-

mented. One such approach is an iteratively abstracted set of attribute sets derived from

Bt, an example of which is further described in Section 4.2.1. Another way is to record

object counts, which is how concept-aware QL works (Section 5.3.1).

In the case that DETECT from Section 4.1.1.2 uses concepts to detect anomalies, the

CONCEPTUALIZE and STORE functions could instead be employed at that point, rather

than here as a separate, subsequent step.

4.1.2.2 Anomaly Abstraction

Each anomaly ~a is abstracted to the subset of formal concepts extracted from the context

for which it is a member, ABSTRACT(~a,K) → C~at , with C~at ⊆ Bt or C~at ⊂ K. In other

words, C~at are the concepts formed by observing the anomaly in context, with respect to
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the agent’s prior knowledge base. For each concept c ∈ C~at , it is a pair of sets c = (A ⊂

Ot, B ⊂Mt) such that~a ∈ A and ∀ v ∈ B, v ∈ ~a. That is, an anomaly is in all object sets

of its concepts, and all attribute-values from its concepts are found in the anomaly. Taken

together, after all anomalies are abstracted, there is CAt = {C~at }, the set of the concepts

formed for each of them.

All detected anomalies are now interpreted as a set of concepts, some of which may

be novel, and these new perceptions are incorporated in the domain knowledge K.

4.1.3 Adaptation

The next phase of anomaly reasoning is to take interpreted anomalies and produce either

a behavior or a re-representation of observed state that reduces uncertainty. The input

consists of CAt , the set of concept sets formed for each detected anomaly, while the output

is an adaptation to the anomaly, α, to be used by the agent or system implementing the

anomaly reasoning framework.

4.1.3.1 Attribute Highlighting

To adapt, an agent first highlights the concepts crucial to its decision making. Thus, an

agent makes use of its domain knowledge K in an algorithm to highlight the relevant

concepts from the interpreted anomaly C~at ∈ CAt . This procedure takes the form of a

function applied to each anomaly, HIGHLIGHT(K,C~at ,Ot) → ~h~at , where the relevancy

weight vector ~h~at = 〈h1, h2, . . . , hd〉 has one weight for each d concept in C~at . With ~h~at ,

the agent can explicitly reason about which concepts are irrelevant or most relevant given
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the context Ot. Moreover, since the highlighting for each interpreted anomaly is done

using the same K and context, elements of the ~ht for different anomalies are on the same

scale and readily comparable.

In most cases it is likely that ~h~at must be learned from feedback based on the agent’s

subsequent decisions. As an example, the concept-aware algorithms described in Sec-

tion 5.3.1, which use concepts as features for function approximation, treat ~h~at as the

weight parameters and learn them through Bellman backups following some bootstrapped

temporal difference algorithm such as SARSA.

Optionally, an additional function could be used to achieve more granular under-

standing of relevancy, at the attribute level. Consider EMPHASIZE(~a,C~at ,
~h~at )→ ~e~at , which

takes the anomaly and its highlighted concepts to find an attribute-wise relevancy weight

vector, ~e~at = 〈e1, e2, . . . , em〉. That is, for each m attribute in the class of the object, the

current attribute-value can also be re-weighted based on what concepts were found to be

relevant and then used in later decision making. As with ~h~at , it is likely that ~e~at would

need to be learned with feedback from decisions made based on the adaptation that ~e~at

suggested.

4.1.3.2 Anomaly Adaptation

Finally, the agent must use its knowledge and highlighted concepts to adapt to the anoma-

lies. For each anomaly, the function ADAPT(K,~a,C~at ,
~h~at , ~e

~a
t ,Ot) → α, where α is some

representation digestible by the agent using the anomaly reasoning framework that re-

duces uncertainty in decision making. This definition is left general as α could take
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various different forms, especially depending on what K contains. For instance, α could

simply be an action that the agent should take, which would assume K then stores and

updates information that directly relates concepts to actions (this is how concept-aware

algorithms work). Or, α could be a replacement of the original anomalous object with

“filled in” attribute-values for noisy or unobserved attributes. More broadly, alpha could

be a remapping of the original input vector of observations ~x to a vector ~̂x with reduced

uncertainty. A naive version of ADAPT would be to map each anomaly to its closest

analogue in terms of concept similarity. More sophisticated approaches would directly

consider the current context to determine holistically what concepts and attribute-values

are relevant. Note that I define α over the anomalies, such that each anomaly recommends

its own adaptation. If necessary, various schemes could be used to select one α among

the set of produced from all anomalies, for instance based on the highlight or emphasis

vectors. Alternatively, they could be collected and applied together as a single adapta-

tion, for instance by replacing each anomalous object or uncertain attribute-values with a

known analogue or predicted values.

To have the anomaly reasoning framework improve domain knowledge and learn

over time, some mechanism must be included to transfer feedback (error, loss, reward)

based on the effects of using α as the selected adaption. Assuming the agent makes a de-

cision based on α, the resulting ρ signal should be used to align domain knowledge with

new information. I refer to this step by the procedure UPDATE(K,α, ρ). This step is sim-

ilar to the STORE function of Section 4.1.2.1, when the agent perceives how the concept

lattice Bt+1 differs from Bt. For instance, the concept-aware algorithms of Section 5.3.1

implement ADAPT by incorporating a learned policy and taking an action α. Then, UP-
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DATE is based on the reward signal ρ = rt+1 from the transition (st, αt, rt+1, st+1) a

parameter-wise gradient descent update improves the concept-based feature weights that

serve as K.

With the completion of the anomaly reasoning pipeline, the agent is able to take

perceptions, build and update a model of its world, and produce an interpretation that

guides behavior to reduce uncertainty, allowing it to generalize in a greater variety of

environments.

4.1.4 Properties

In general, I make use of FCA as it provides a good balance between hierarchical, sym-

bolic reasoning and low-level encoding, while granting several other advantageous prop-

erties. First, objects and concepts alike can be represented dually and ordered by their

respective intent, which corresponds to a binary vector (or bitstring). This benefit also

provides an extensible abstract space that simplifies measuring similarity, facilitating the

search for relevant or analogous concepts, objects, and attributes. Second, formal con-

cepts often yield groupings of objects that human observers find semantically meaning-

ful, for instance concepts that capture all objects of a certain shape or color. This ability

can lead to greater explainability, where an agent can point directly to the concepts most

relevant to its decision (in relation to the other concepts present) as justification. Third,

formal concepts derived from OO-MDP states represent useful semantic sub-states that

recur across domains, allowing the agents to consider partitions of state space where the

formal concepts are found. For example, concepts which occur in all states can be iso-
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lated as irrelevant to solving the given MDP. Additionally, conceptual sub-states could be

clustered to find topological properties and examine how a value or action-value varies

across those dimensions. As noted in Section 4.1.2, definitions of concepts other than

FCA could be used instead. However, to suffice for anomaly reasoning, they would at

least need to afford these properties to achieve anomaly reasoning.

4.1.4.1 Representation and Indexing

Objects can be stored as binary vectors, or unsigned bitstrings where activated bits in-

dicate the presence of a specific attribute-value and unset bits indicate the lack of that

attribute-value according to the canonical ordering Mt. Likewise, the attribute-value set

of a concept (corresponding to its intent) may also be stored as a bitstring, again with “on”

bits denoting membership of that attribute-values in that concept. Specifically, for an ob-

ject g or a concept c = (A,B), its intent is {g}↑ or B, respectively. Any intent B consists

of a subset of known attribute-values m ∈ B ⊂ Mt and can be ordered according to the

canonical ordering Mt of attribute-values (which grows as new ones are observed). Thus,

a binary vector ~b can be derived for intent B, |~b| = |Mt|, such that ∀ mi ∈ Mt, each

element in~b is defined:

bi =


1, if mi ∈ B

0, otherwise

. (4.1)

Note that the binary vector of an intent ~b can be translated immediately into an

unsigned bitstring. For convenience and extensibility, these strings are considered “little-

endian,” with 12 = 1, 012 = 2, 0012 = 4, and so on. This choice means that when
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a new attribute-value vk is observed and |Mt| grows larger, the bitstring representations

of intents from concepts seen at any time before t do not need to change (their bitstring

would simply have a “0” at index k). Thus, the old ones are still valid since no previous

object or concept ever possessed the newly observed attribute-value.

I refer to an object’s or concept’s intent index as the decimal natural number to

which its intent’s bitstring is equal. A concept of no attribute-values (empty intent) has an

intent index of 0. A concept with all attribute-values observed up to t has an intent index

of |Mt|.

4.1.4.2 Similarity Metrics

With a binary representation and the intent indexing, all objects and concepts can be mea-

sured in the same attribute-value (intent) space, allowing us to make object-to-object,

object-to-concept, and concept-to-concept comparisons. This property is welcome be-

cause it expands the ways in which I can relate objects and concepts, in terms of set mem-

bership and not just as vectors in some high-dimensional space. A standard approach to

measuring similarity among objects (rows or vectors in a data set) might consist simply

of computing the cosine similarity or Euclidean distance, or performing dimensionality

reduction (e.g., principal components analysis) to obtain a compressed representation and

applying those same metrics. However, these techniques lack the main benefit granted by

binary representation: set membership. That is, it is straightforward to find the concept

sets to which an object belongs, which concepts are shared between two objects, and the

overlap of shared attributes between two concepts, all using bitwise operators. For in-
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stance, if an object possesses all the on-bits found in a concept, then it must belong to that

concept’s extent. Similarly, the super- and sub- concept relations are apparent, and simi-

larity among concepts can be assessed by considering how many bits (on, off, or both) on

which they overlap.

Thus, for objects and concepts, various types of set-similarity (or distance) metrics

are applicable, and I note four: Hamming, Euclidean, Jaccard, and Rogers-Tanimoto [175].

The Hamming distance for two bitstrings ~x and ~y with magnitudeB = |~x| = |~y| is simply

the number of bits on which two strings differ (i.e., the cardinality of their XOR), while

Euclidean distance is the square root of the Hamming distance. Set similarity based on

Euclidean and Hamming distances is just simdistance = 1 − distance
|B| . It is significant that

Hamming captures the complete distance among strings, such that every bit that differs

increases the distance. For example, suppose there are two object oa and ob, and a con-

cept c. Further suppose that the objects are identical except for their color (oa is red, ob

is blue), and that c contains all attribute-values of oa and ob except any related to color.

Then under Hamming distance, c is more similar to both oa and ob (only one bit is differ-

ent) than oa and ob are to each other (they differ by two bits). Thus, Hamming distance

is a useful tool for assessing similarity when a greater granularity of object-concept and

object-object differences is required.

Jaccard set similarity is the cardinality of their intersection divided by the cardi-

nality of their union, simJ = |~x ∩ ~y|/|~x ∪ ~y|. Rogers-Tanimoto set similarity is the

count of shared bits over that same number plus two times the number different, or

simRT = |∼(~x ⊕ ~y)| /
(
|∼(~x ⊕ ~y)| + 2|~x ⊕ ~y|

)
. While there is no gold standard of

accuracy, the Rogers-Tanimoto metric has been recommended as having the best dis-
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criminative power in terms of entropy variations and recognition accuracy on various

tasks [175]. In particular, Rogers-Tanimoto doubles the count of bits in the XOR between

two bitstrings. This property makes more semantic sense for concepts than the Sokal-

Sneath metric (which doubles the similarity), since concept bitstrings are sparse (mostly

off-bits). One perspective on Rogers-Tanimoto is that the numerator is the number of

bits in which the bitstrings agree, and the denominator is the number of all “realized” bit

states [122].

4.1.4.3 Object Hierarchies

A crucial benefit of FCA is that the concept lattice inherently captures abstract group-

ings of objects that correspond to classes or categories to which that object would belong.

While I do yet not describe leveraging object hierarchies directly in anomaly reasoning,

they become useful in subsequent work, especially for transferring behaviors by consid-

ering what has been learned for objects in both super-concepts and sub-concepts.

4.1.4.4 Hypothetical States

Formal concepts inherently capture semantic, abstract groupings of features of a given

context. When this context is drawn from the state space of an MDP, the concept-

based features correspond to abstract substates that describe meaningful properties of

state space. For instance, a substate derived from a concept may contain all red block-

shaped objects, or gray door-shaped objects. The vast majorities of these sub-states are

not reachable via any transitions since they do not literally exist in any ground state. Each
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concept can be used to partition state space by either presence or lack of the concepts;

literal ground states are conjunctions of these concept-based substates. They perform

domain reduction (grouping objects), hiding (removing objects), and co-domain hiding

(selective attention), each of which is a valuable form of abstraction [125]. Thus, by

thinking of states in terms of concept presence, an agent could construct new hypothet-

ical states through novel combinations of concepts. These “imagined” states could be

evaluated on the probability of their existence and their potential value (equivalently, the

action-value of certain actions taken in when in them). Hypothetical states could serve

as goals for a reasoning agent to posit and then plan to reach, which would be especially

useful in partially observable and more uncertain domains. Similarly, training an agent to

solve parameterized tasks with concept-based task descriptors could help attain an even

higher-level, general ability to transfer skills across related tasks, including those not seen

before.

4.2 Interpretation as Classification

The initial approach centers on analyzing the utility of FCA for anomaly interpretation

and adaptation. To this end, I have focused on developing novel methods with the hypoth-

esis that anomaly reasoning necessitates combining a machine learning approach with an

organized representation of knowledge. The initial steps were first to develop a prototypi-

cal interpretation system that observes different contexts of objects and builds an abstract

hierarchy of object classes while interpreting novel ones, and second to implement func-

tion approximation based on formal concepts to aid transfer learning for concept-aware
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decision-making algorithms.

4.2.1 Interpretation Prototype

Ultimately, anomaly reasoning agents should subsume novelty quickly for complex do-

mains rich in objects and attributes. One such domain is NetHack, a computer game

first released in 1987. The environment in NetHack consists of partially observable

“gridworld”-style levels populated by monsters that a player (agent) must traverse while

attempting to survive. An agent completing successive levels will encounter many new

objects (monsters, items, furniture) such that behavior learned in the past can transfer to

these new entities.

My goal is to examine the effectiveness of FCA as the central vehicle for anomaly

interpretation, separate from detecting and reacting to anomalies. Therefore, I assume

an agent is given an object-based representation and, subsequent to interpretation, do not

consider the adaptation or interaction, for instance with an MDP.

The interpretation prototype follows a training-testing pattern, first learning on a

given context drawn randomly from a distribution of objects in a training set. When a

context is observed, a concept lattice is built and then abstracted to a set of attribute sets

(CONCEPTUALIZE). These sets are then added to the initially empty knowledge model

K, a hierarchical graph of these attribute sets that grows as more concepts are discov-

ered (STORE). Then, in a testing phase, the K is made static so it can be evaluated on

anomalies, which consist of unseen objects (from a test set). Each anomaly is interpreted

through K as a set of concepts (ABSTRACT). I consider the accuracy of the interpreta-
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tion by various similarity measures, and report Rogers-Tanimoto similarity for concept

bitstrings in subsequent discussions since this metric captures a better granularity of dif-

ferences between binary sets, as explained in Section 4.1.4.2. Overall, the interpretation

process offers the closest known analogue that the anomaly matches, which could theo-

retically be used as the output α for ADAPT.

To extract concepts and retrieve a lattice, I employ the IN-CLOSE2 algorithm, which

follows the exploration strategy of Fast Close by One in conjunction with a test of canon-

icity to search more efficiently [7]. IN-CLOSE2 defines two subprocedures: a recursive

concept builder and the canonicity test ISCANONICAL. Concepts are built by recursively

computing extents, checking if an attribute is part of the extent and testing the intersection

of a given concept’s current extent with the extent of the next attribute. The latter is used

whenever a new intersection is found to check if it corresponds to the extent of a new

canonical concept or if it is already contained in any of the concepts already computed. If

this candidate extent is canonical, it is added to the list of children of the current extent be-

ing constructed. Thus, the algorithm performs a kind of dual breadth-then-depth search,

determining attributes that would belong to a concept (in queue order) and then expanding

its child concepts (in stack order). A central challenge of FCA algorithms is to compute

closures efficiently; IN-CLOSE2 minimizes the overhead of repeatedly computing clo-

sures by doing so implicitly with the limited backtracking that ISCANONICAL performs.

The asymptotic worst-case time complexity of IN-CLOSE2 is O(|B||G||M|2) [164]. The

actual construction of the lattice is done with Lindig’s UPPERNEIGHBORS algorithm that

constructs the lattice bottom-up, starting with the zero concept found by IN-CLOSE2, re-

cursively finding the parent concepts of each given concept, with worst case complexity
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of O(|B||G|2|M|) [93].

4.2.2 NetHack Monster Data Set

I create a data set consisting of all classes of mobile entities in NetHack called the

NetHack Monster data set extracted from the game’s data files and contains 390 object

types (monsters), each with five observable attributes: shape, color, speed, alignment,

sound, and size. I binarize the data yielding M, the set of all possible attribute-values

(M = 162). Building a concept lattice on the full data set results in 1408 formal con-

cepts. Visualizations of the data are presented in Figure 4.1, Figure 4.2, and Figure 4.3

to show that the observable features are sufficient to capture the species-like relations

among monsters. Figure 4.1 shows a smaller subset of the NetHack monsters data set in

a heatmap of Hamming distance with dendrogram showing the relationships of objects in

the data. For instance, smaller creatures and animals group together (such as giantrat and

newt), and are separated clearly from the larger humanoid cluster with the acolyte and el-

venking. Figure 4.2 captures the full dendrogram of NetHack monsters, with an arbitrary

threshold set at a distance of 0.055 to yield 22 clusters. For the most part, clusters sep-

arate monsters clearly along semantically sensible lines that parallel behaviors they may

exhibit in the game. The large yellow cluster in Figures 4.2a and 4.2b contain humanoid

monsters, while the red cluster in Figures 4.2b and 4.2c contains primarily animals or

otherwise small monsters. These clusters indicate that analogies made among monsters

by an agent playing NetHack would be useful, as almost any given monster has subsets of

others that it is related to at varying degrees. The t-distributed stochastic neighbor embed-
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ding (t-SNE) of the NetHack Monsters data set in Figure 4.3 shows the relative positions

of clusters from the high-dimensional manifold projected down to a 2D space. For ex-

ample, small and animal-like creatures are in the orange and yellow clusters in the lower

left, while more friendly humanoids are in purple in the lower right, and more dangerous,

complex monsters are projected to the center and top regions.

4.2.3 Lattice Abstraction

A parallel goal was to ensure that interpretation would scale. This is achieved in part by a

process of abstracting the concepts that are formed and storing a more compressed repre-

sentation. More specifically, a formal context in the FCA sense is fully recoverable from

a concept lattice. Since the goal is to use lattices as domain knowledge K in anomaly

interpretation, an agent could theoretically just keep all lattices ever constructed and per-

form, in essence, a kind of k-nearest neighbors algorithm. However, it is not preferable

to retain all information ever derived from perceptions. Storing everything in memory is

not feasible at scale, nor is it reflective of the biological, cognitive process of memory.

Thus, I develop an iterative abstraction process that maps from concept intents to a vec-

tor of object counts (assuming a canonical ordering of objects Ot), stored sparsely. This

function performs the STORE function of the anomaly reasoning framework. Initially, K0

is empty, since no concepts have been formed. For the lattice formed at time t, Bt, the

execution of STORE(Kt,Bt) first aligns the current set of attribute-values Mt with the

known ordering of all seen attribute-values. Then it converts each concept c ∈ Bt into a

condensed representation c̃ = (~b, l), a pairing of a bitstring and list of identifiers, where
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Figure 4.1: A heatmap and dendrogram for a subset from the NetHack data set. Clustering
reveals semantically meaningful groupings of similar monsters and their relatedness to
other subclusters.
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(a) (b)

(c) (d)

Figure 4.2: Dendrogram for the NetHack Monsters data set, clustered by average Ham-
ming distance. The vertical axis drawn at distance 0.055 was chosen as the threshold, pro-
ducing 22 clusters. Branch labels are the distance between subclusters scaled up (d∗100).
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Figure 4.3: A t-distributed stochastic neighbor embedding (t-SNE) that visualizes the 22
clusters formed via clustering with a threshold of 0.055 on average Hamming distance.
Some representative instances are labeled.
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the former is from the binary vector of the concept’s intent and the latter is simply the

names or row labels of the objects in the extent. All such pairs are added to the knowl-

edge base, Kt ← Kt−1 ∪ {c̃ | c ∈ Bt}. This abstracted representation of the lattice can

be stored efficiently, with each concept keyed on its intent’s bitstring, which permits a

bijective mapping to the identifier list. Whenever a known concept is observed (c̃ was

already in Kt−1), its list l is simply appended to the one already stored in Kt−1. Equiv-

alently for the NetHack Monster data set, a counter of each observed object identifier is

incremented instead of using a list, which follows since an object’s identifier is the name

of its class. For example, having seen a “gnome” with the concept of “color:red” before

and upon seeing one for the second time, the count of “gnome” stored in the bitstring

corresponding to “color:red” would now be set to two.

The structure of K resulting from STORE is a partially ordered set of condensed

concepts. It is not necessarily a lattice since there may exist a subset of two pairs that do

not have a least upper bound or greatest lower bound (that is, they violate the join or meet

conditions for a lattice). However, the lattice property is not needed for interpretation,

only the partial ordering which is preserved through this procedure. Further, the con-

densed concepts in Kt can be totally ordered by their ~b, which facilitates fast operations

such as using a red-black tree for O(log(n)) search, insertion, and deletion.

4.2.4 Analysis

In terms of assessing performance, my objective is to investigate the representative power

of FCA. I describe and implement a simplified version of anomaly interpretation, hy-
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Figure 4.4: The average Rogers-Tanimoto similarity of anomalies to their interpreted
(nearest neighbor) averaged across 25 trials. The data set was split into 80/20 partitions
and evaluated each round. The similarity values are normalized with respect to the mini-
mum similarity. Both the object-only and concept-based interpretations follow the same
trend, but allowing concepts immediately increases and sustains the average similarity
(the difference is statistically significant, p < 0.05).

pothesizing that it will be more accurate in some if not most cases to match anomalous

objects to known concepts rather than previously stored cases (objects) alone. That is,

I investigate performing nearest neighbor lookup by mapping objects into a conceptual

space rather than finding similarity among known objects. The intention with this inter-

pretation prototype is not to develop the most accurate nearest-neighbor method, but to

create a diagnostic tool that demonstrates the utility of FCA for storing and condensing

knowledge, mapping anomalous entities to analogous objects previously seen at various

levels of abstraction.

My setup to analyze FCA-based interpretation follows a standard machine learning

scheme, with a data set is split into training and testing, and an agent learns to map novel,

unseen objects into the space of known, related data. The idea for iteratively abstracting

over windows of monsters is to simulate what an agent playing NetHack might experi-
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ence. That is, in any given state the agent would not see all possible monsters but only (at

most) a small random subset comprising the formal context at that time. Using a train-test

split of 80/20, an agent is given a subset of 15 monsters (drawn randomly with replace-

ment) for 200 rounds each trial, for 25 trials. In each round t, a concept lattice is ex-

tracted from the context, abstracted, and stored inKt. In evaluation, each test instance (an

anomaly) is considered separately (i.e., not in a context) and against the nearest neighbor

concepts according to various similarity metrics discussed in Section 4.1.4.2: Euclidean,

Hamming, Jaccard, and Rogers-Tanimoto. To gauge the performance of concept-based

interpretation with a simple baseline, I also compare it with an “objects-only” approach

that followed the same process, but only stored objects and no concepts.

After training, the final |K200| ≈ 700 on average, meaning that slightly over half

of the possible concepts from the entire NetHack Monsters data set were discovered after

200 rounds. Figure 4.4 plots the average Rogers-Tanimoto similarity, averaged across

all 25 trials and normalized by the minimum similarity (i.e., the worst case interpreta-

tion). The plots follow a logarithmic trend, quickly reaching a threshold by around 60

rounds. The two lines are statistically significantly different (t-test at significance level of

0.05). Note that the concept-based interpretation immediately finds more accurate inter-

pretations, sustains its improvement over the objects-only approach, and exhibits steps of

increasing similarity (indicating more useful concepts are discovered periodically).

In general for concept-based interpretation, the majority of anomalies are inter-

preted as concepts that closely approximate the anomaly given the agent’s knowledge. If

the anomaly and its interpretation differ by one or two attributes, then they would have

normalized Rogers-Tanimoto similarity of either 0.795 or 0.593, respectively. So, the re-
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ported scores that exceed these similarity values indicate that the concept-based approach

can recover interpretations that, on average, are more accurate. More precisely, the recon-

struction and the original differ by strictly less than two bit positions (the interpretation

is off by less than two attributes). This observation includes swapping the same attribute,

for instance as with the anomaly “vampirebat” which is interpreted as a raven, identical

on all attributes except it was assumed to squawk instead of squeak:

vampirebat [shape:BAT, color:BLACK, move:20;22, align:0;2, sound:SQEEK, size:SMALL]

interpreted as:

intent: [shape:BAT, color:BLACK, move:20;22, align:0;2, sound:SQAWK, size:SMALL]

unused: [sound:SQEEK], added [sound:SQAWK]

extent: [raven=29]

similarity: 0.976, normalized: 0.593

Two other examples that evince a close matching of concepts, where only an attribute-

value was swapped for another, are the snake anomaly interpreted as a watermoccasin,

and the cobra interpreted as a pitviper:

snake [shape:SNAKE, color:BROWN, move:15;16, align:0;2, sound:HISS, size:SMALL]

interpreted as:

intent: [shape:SNAKE, color:RED, move:15;16, align:0;2, sound:HISS, size:SMALL]

unused: [color:BROWN], added: [color:RED]

extent: [watermoccasin=31]

similarity: 0.976, normalized: 0.593
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cobra [shape:SNAKE, color:BLUE, move:18;20, align:0;2, sound:HISS, size:MEDIUM]

interpreted as:

intent: [shape:SNAKE, color:BLUE, move:15;16, align:0;2, sound:HISS, size:MEDIUM]

unused: [move:18;20], added: [move:15;16]

extent: [pitviper=30]

similarity: 0.976, normalized: 0.593

A few anomalies are interpreted as an exact match, when the same combination of at-

tributes have been observed before (e.g., coyote and jackal appear the same):

ranger [shape:HUMAN, color:DOMESTIC, move:12;13, align:-10;-2, sound:HUMAN,

size:HUMAN]

interpreted as:

intent: [shape:HUMAN, color:DOMESTIC, move:12;13, align:-10;-2, sound:HUMAN,

size:HUMAN]

unused: [], added: []

extent: [rogue=35, elf=36]

similarity: 1.000, normalized: 1.000

coyote [shape:DOG, color:BROWN, move:12;13, align:0;2, sound:BARK, size:SMALL]

interpreted as:

intent: [shape:DOG, color:BROWN, move:12;13, align:0;2, sound:BARK, size:SMALL]

unused: [], added: []

extent: [jackal=33]
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similarity: 1.000, normalized: 1.000

Some other representative examples of successful interpretations include some that sim-

ply ignore attributes, when the anomaly best matches a more abstract concept:

panther [shape:FELINE, color:BLACK, move:15;16, align:0;2, sound:GROWL,

size:LARGE]

interpreted as:

intent: [shape:FELINE, move:15;16, align:0;2, sound:GROWL]

unused: [color:BLACK, size:LARGE], added: []

extent: [lynx=2, jaguar=2]

similarity: 0.976, normalized: 0.593

vampire [shape:VAMPIRE, color:RED, move:12;13, align:-10;-2, sound:VAMPIRE,

size:HUMAN]

interpreted as:

intent: [shape:VAMPIRE, align:-10;-2, sound:VAMPIRE, size:HUMAN]

unused: [color:RED, move:12;13], added: []

extent: [vladtheimpaler=1, vampirelord=1]

similarity: 0.976, normalized: 0.593

Only a couple of instances seem to defy logic or have poor similarity. One possible ex-

planation is that this observation is an artifact of the data set, and that not every monster

could group sensibly with others. Potentially there was simply no adequately similar con-

cept ever observed during in a subset during training process. However, the dendrograms
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previously discussed demonstrates that the following examples should have several can-

didate monsters that would serve as better nearest neighbors than the ones listed in the

extent of the interpretation output. Still, even in cases where the interpretation finds low

similarity, this information may prove useful to anomaly reasoning more generally. For

instance, consider an agent playing NetHack encountered an anomaly such as the ones

below. This agent could reason about uncertainty by leveraging poor similarity scores

in its own position: such low values essentially inform the agent that it “knows it does

not know” about the anomaly. The subsequent adaptation procedure could build on this

explicit knowledge of uncertainty to guide exploration or evasion.

dwarf [shape:HUMANOID, color:RED, move:6;7, align:2;5, sound:HUMAN, size:HUMAN]

interpreted as:

intent: [color:RED, move:6;7]

unused: [shape:HUMANOID, align:2;5, sound:HUMANOID, size:HUMAN], added: []

extent: [pyrolisk=3, giant=3, hezrou=1, largekobold=1, dwarfzombie=3, pitfiend=5]

similarity: 0.952, normalized: 0.195

hobbit [shape:HUMANOID, color:GREEN, move:9;10, align:6;11, sound:HUMAN,

size:SMALL]

interpreted as:

intent: [color:GREEN, align:6;11]

unused: [shape:HUMANOID, move:9;10, sound:HUMAN, size:SMALL], added []

extent: [couatl=3, greendragon=3, guardiannaga=2]

similarity: 0.952, normalized: 0.195
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In some cases, even interpretations that yield low similarity can still have semantic

validity. For instance, the “wingedgargoyle” anomaly has uncommon attributes, making

it distant from most other monsters. Although it has low similarity to its interpreted

concept, the others in the extent are in the same cluster as in Figure 4.2b, making it still

relevant given the larger scope of the data set.

wingedgargoyle [shape:GREMLIN, color:LORD, move:15;16, align:-13;-10, sound:GRUNT,

size:HUMAN]

interpreted as:

intent: [color:LORD, move:15;16]

unused: [shape:GREMLIN, align:-13;-10, sound:GRUNT, size:HUMAN], added []

extent: [croesus=1, demogorgon=1]

similarity: 0.952, normalized: 0.195

While this analysis is qualitative, it demonstrates that hierarchical concept-based

interpretation is promising for attribute-rich domains. Extensions to supervised learning

could focus on classification of anomalies (through concepts) by their cluster label or

the unobserved “level” attribute from NetHack (corresponding to the relative power of

the given monster). In subsequent chapters, I shift focus beyond mere classification to

decision making, first in a contextual bandits framework, and then in a reinforcement

learning paradigm.
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Chapter 5: Concept-Aware Decision Making

In general human understanding, abstract concepts arise from our innate ability to recog-

nize commonalities and patterns in the environment. Forming concepts aids our catego-

rization of the objects we perceive in the world, enabling us to store and recall those things

previously experienced. Beyond their use in analogical comparisons of the unknown to

the known, concepts jumpstart our faculty for inductive reasoning. In other words, we use

concepts in our practice of generalizing from few cases to many.

With concepts, we draw connections not just over the observational properties, or

attributes, of objects, but over our interactions with objects. Consider billiards: just prior

to our pool cue striking a ball, we anticipate the outcome, that the cue will halt and the

ball will be propelled onward, arcing and ricocheting across the table. Even though we

have perhaps never held this particular cue or struck this particular ball, we intuit the

expected causal effects of this action, no matter how faulty induction may be [65]. Our

concept of a pool cue interacts with our concept of a billiard ball to yield the changes

in the world that we seek. From this vantage, we rely on conceptual abstractions of

the world ubiquitously when deciding how to act. In this chapter, I tackle this problem,

applying concept formation to decision making. Bridging from our previous discussion of

concepts of taxonomic classification of anomalies, concept-aware methods for reasoning
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intelligently about how concepts affect the results of our actions, and conversely how our

interactions with the world bring about new concepts.

While concept is a vague, so-called “suitcase” term, I define it precisely based

on the theory of formal concept analysis. My examination of formal concepts is ex-

tended from the previous chapter to consider them in a decision-making context, where

anomaly interpretation and adaptation are handled together by an intelligent agent pro-

cessing its state and taking actions to optimize discounted reward. In Section 5.1, I first

introduce a novel form of state abstraction called concept-aware feature extraction, us-

ing FCA principles to create a new feature space that describes an agent’s surroundings,

from ground-level object-concepts up to increasingly more general clusters of objects’

attributes. This approach is based upon my previously published work in Winder and

desJardins (2018) [170]. In Section 5.2, I address the topic of contextual bandits, and

demonstrate how conceptual features allow an agent to adapt more readily to novel and

uncertain objects as they appear. In Section 5.3, my investigation shifts to temporal differ-

ence reinforcement learning, examining the beneficial effects to transfer learning that can

be observed when concepts serve as the bases of linear value function approximation. I

conclude with a summary of how concept formation helps transfer knowledge and behav-

iors learned in one context or task across related ones in unseen environments. Ultimately,

concepts offer an interpretable and straightforward representation well-suited for agents

to learn at varying, appropriate levels of generalization.
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5.1 Concept-Aware Feature Extraction

Having established concept formation in Chapter 4 as a tool for handling novelty and sub-

suming the uncertain into the familiar, I aspire to incorporate this ability into intelligent

agents that solve tasks. Moreover, my aim is to have concepts facilitate the transfer of

knowledge across a universe of related tasks. Transfer in RL aims to have agents record

and persist skills associated with features in their environment to better solve new chal-

lenges [154]. Concept formation permits knowledge learned from one task to be applied

to a new problem by identifying the appropriate level of generalization, transferring be-

haviors between related tasks in unseen environments.

I introduce my novel technique, concept-aware feature extraction (CAFE), describ-

ing it first at a high level, and with greater detail in the following section. Using the

scheme of concept formation for RL, I then consider its application to contextual bandits

as well as reinforcement learning problems with factored state spaces (in which a state is

comprised of a set of objects, each described in turn by a vector of attribute-values).

CAFE performs state abstraction by mapping a state to a vector of features. At its

core, CAFE applies FCA to build a concept lattice from each state it encounters. The

formal concepts, generated from state factors, form the basis of the derived features later

used in function approximation. These concept-based features effectively serve as high-

level descriptors or “hidden features” of state space.

By applying FCA, I leverage a central property to its theory: that it creates a par-

tial ordering of factors. More precisely, the inherent super- and subset relationships of

formal concepts means they delineate explicit tiers of increasingly abstract factor clusters
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(the partial ordering) that recur across observed states. An agent’s challenge, then, is to

record experiences, such as value or expected reward, and learn behaviors over all con-

cepts pulled from the corresponding lattices of observed states. In subsequent sections, I

describe how agents learn how to act with concepts.

5.1.1 CAFE Approach

CAFE achieves state abstraction through a process of clustering, abstraction, and re-

grounding. First, a concept-aware agent uses FCA to project its current state into an

intermediate space of feature clusters (formal concepts). These concepts are grounded

back onto the state, producing the final sparse set of features suitable for use in value

function approximation. CAFE thus re-represents states in terms of the concepts that

were extracted from them.

Definition 5.1 (Concept-Aware Feature Extraction). The state abstraction func-
tion φ : S → {0, 1}k implements concept-aware feature extraction (CAFE) by
following this procedure:

1. The input state s is converted into a formal context, ρ(s)→ (O,M, I).

2. A concept lattice is obtained, Γ(O,M, I)→ B.

3. For each formal concept ({m}↓, {m}) ∈ B, an intermediate abstract con-
cept is created: c = (|{m}↓|, {m}), the object count and attribute set, for
c ∈ C.

4. Concepts are grounded to s, yielding concept substates, Ψ(s, C)→ Zs. Note
that Zs ⊆ Z , the set of all known substates, with k = |Z|.

5. In the output vector φ, element i = 1 if concept substate zi ∈ Zs, 0 otherwise.

Thus, φ produces a sparse feature vector by composing functions ρ, an object rec-
ognizer; Γ, a concept-mining algorithm; and Ψ, a grounding procedure.

From Definition 5.1, I see that CAFE combines several functions to express the
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abstract concepts that are present in a ground state. A concept-aware agent, thus, goes

through concept formation and then concept grounding, localizing the abstract concepts

to their current context.

Concept Formation

First, states must be represented in terms of a formal context, as the incidence I of objects

O on attribute-valuesM. For an OO-MDP state, the set of objects may serve immedi-

ately as the complete context, though I allow any general ρ mapping of states to be used.

CAFE then computes a concept lattice from this context using Γ, which may be any stan-

dard concept-mining algorithm such as IN-CLOSE2 [7]. The output is a concept lattice

B, a partial ordering of formal concepts of the form ({m}↓, {m}), paired sets of member

objects and attribute-values, respectively. To further abstract away the specific objects,

each formal concept is converted into an abstract concept pair, c = (|{m}↓|, {m}), re-

taining the attribute set but replacing the object set with a count. Using the object count

achieves abstraction while still permitting us to differentiate among concepts that share

the same {m} but not the same number of objects (for example, the concept of two green

squares versus that of three green squares). Note, I refer to the set of formal concepts

extracted as the lattice B, separate from the set of abstract concepts c ∈ C.

Concept Grounding

Next, each abstract concept is grounded to the state s. This process filters the objects in

the agent’s current surroundings by the high-level cluster of features identified via FCA.
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I define a grounding procedure Ψ that produces a set of concept substates, the result

of grounding abstract concepts to the original state. I regard z as a substate because

it describes the pieces of the ground state that remain when filtered through the lens

of its particular c. These are precisely the kind of “hypothetical states” discussed in

Section 4.1.4.4. Formally, Ψ(s, C) → Zs. Individually, each c ∈ C is grounded with a

subprocedure ψ(s, c) → z, and their collection forms the set Zs. Additionally, I assume

an arbitrary ordering of z ∈ Z based on the order in which they are encountered.

The ψ function constructs z by leveraging the factored nature of ground states.

Specifically, psi duplicates s to get z, and then removes all factors corresponding to ob-

jects and attribute-values not present in c. An implementation question arises in the case

that, as designers, we wish to preserve some factors from being abstracted away. Suppose

we want to keep a feature from figuring into concept formation, or otherwise preserve

a feature unique to an object that should persist through abstraction; for example, an

identifier feature or label. We can straightforwardly prevent features like identifiers from

inclusion in the formal context. However, upon grounding, knowledge of them would be

lost without measures to retain them. Thus, in grounding the abstract concept back to the

state, the identifiers would be preserved in the substates, remaining on any objects not

fully abstracted away. Should no factors need to be preserved, I allow that grounding may

be implicit, with the abstract concepts C serving directly as substates Z .

For an example of grounding, consider a state that contains one red chair, one blue

chair, and one red backpack (Figure 5.1). If this state is abstracted by the concept “red,”

the resulting concept state would consist of two red objects (subtracting all shapes, other

colors, and objects not matching any attribute-value in the concept). Similarly, if that
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same state is abstracted by the concept “chair,” it would produce a concept state of solely

two chair objects.

Featurization

Finally, featurization by φ produces a vector indicating the presence or absence of concept

substates. As an ordering of Z is assumed, it follows that one then computes the vector

resulting from φ(s) such that each element φi is equal either to 1 if zi ∈ Zs (0, otherwise),

up to k = |Z| elements.

I highlight the fact that this vector is sparse, in that CAFE only needs to store in-

formation related to concepts already encountered (and not for all possible concepts). As

more concepts are discovered, k increases. Yet, older outputs of φ need not change, except

by appending 0 elements to their vectors, since, due to the properties of FCA, any new

concepts by definition must never have existed in a previously seen state. Thus, concept

substates may be reduced to the set of those known incrementally, as they are encoun-

tered. Therefore, one may say that CAFE is extensible, without the need to update or

recompute any prior knowledge or representation, and elaborate further in Section 5.1.3.

In summation, CAFE effectively maps states into abstract concept space, the vec-

tor space spanned by the basis functions corresponding to the abstract concepts of all

extracted lattices.
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Figure 5.1: A diagram of CAFE for an example concept. Consider a toy example of three
objects, each with a color and shape, as well as an attribute “id” that we, as designers,
have marked as held back from state abstraction. Given the current state (observation),
concepts are extracted using FCA (concept formation). Now regard just one example
formal concept corresponding to the attribute-value “color:red”, in the upper-left. Its
intermediate abstract concept ci is obtained with an object count of two (abstraction).
Combining ci with s produces a concept substate zi (grounding), a filtering of the ground
state based on the concept, while preserving any held-back attribute-values. Note that this
process is repeated for each concept formed; together, the set of concepts substates are
used as features in VFA.
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5.1.2 CAFE Anomaly Reasoning

In terms of the anomaly-reasoning framework from Chapter 4, CAFE satisfies the goals of

identification and interpretation. Referring to Definition 5.1, the function ρ handles REC-

OGNIZE. In my future experiments, ρ is implicit, because my assumption of an OO-MDP

means states are already represented as object sets, and anomalies are any unknown (never

previously seen) states or objects. CAFE also encompasses the interpretation functions

of CONCEPTUALIZE, STORE, and ABSTRACT. Γ performs CONCEPTUALIZE. Steps 3

and 4 address ABSTRACT, first abstracting formal concepts to remove object-specific ref-

erences, and then creating concept substates via the grounding procedure Φ. In general,

novel substates appear in the presence of any new, anomalous objects or features, creat-

ing the uncertainty to which an agent must adapt. A concept-aware agent, then, achieves

anomaly adaptation by using CAFE in conjunction with a suitable decision-making algo-

rithm.

For STORE, I assume that the anomaly-reasoning knowledge base K retains an

ordering of the k concept substates that have ever been seen, expanding as new ones are

encountered. For use in linear VFA, CAFE’sK would also include a weight vector θ, also

of length k, adding another weight whenever a new concept substate is observed due an

anomaly. Thus, the representational space of domain knowledge grows to accommodate

novelty.

Considering the theoretical size of K, I note first that in any given MDP, there

exists some range of all possible attribute-values that any object could take,M. Hence,

|Z| = 2|M|, the theoretical extent of all knowable concept substates, as derived from
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the powerset of all attribute-values. However, as previously discussed, CAFE employs

sparsity and does not need to represent any concept substates not yet seen. Additionally,

in practice, I find that the number of possible concept substates far exceeds the set of those

explicitly known to an agent, |K| << |Z|. Recall that this thesis is approaching decision

making from the goals of transfer learning and generalization. Thus, the domains under

consideration are those in which, from state to state, there exists considerable overlap

in the objects and attribute-values that are present. Indeed, this assumption is crucial

for generalization to be possible. Thus, I would not recommend CAFE for pathological

domains where states share nothing in common (such domains being ill-suited for transfer

learning, violating a standard assumption of relatedness among tasks). Again, I observe

that even in the complex domains later discussed, the actual number of concepts seen and

stored is orders of magnitude smaller than the theoretical extent of concept space.

5.1.3 CAFE Properties

I motivate CAFE as an automatic featurization technique following from FCA theory,

where the set of available symbols expands naturally and hierarchically upon the encoun-

tering of novel, anomalous objects. My primary focus, then, is CAFE’s use in contextual

bandit and reinforcement learning problems.

Extensibility

As opposed to many other featurization techniques as discussed in Section 2.1.2 (e.g., tile-

coding, radial basis functions, Kanerva encoding, deep convolutional neural networks),
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CAFE can yield as many novel features as are necessary to describe a given state, extend-

ing its representational space as new features are encountered. I observe this property of

CAFE is due to the inherently extensible nature of FCA, such that new formal concepts

may be incorporated incrementally with their hierarchical (sub- and super-concept) rela-

tionships immediately apparent. This extensibility will be seen in the following sections

to facilitate the transfer of learned behaviors effectively, where other approaches would

falter or fail.

Beyond assuming the ability to define a ρ function that represents states as a formal

context, CAFE does not need to know anything else about the structure or nature of state

space. Crucially, other existing featurization methods are not designed to handle the case

of an expanding set of features, with each making assumptions on the scope and properties

of their input states. For example, to properly compute the tiles for CMAC, the precise

number of state factors possible in any single state must be known beforehand. For neural

networks, the input (often, a matrix unrolled to a vector) must be held constant, like a

window or fixed sensor view of the world, such that “larger” states or windows cannot

be represented without rescaling or similar transformations. For radial basis functions

and similar approaches, the range of all possible object-attribute values must be known

beforehand, along with the precise number of classes of objects. Thus, existing techniques

assume that their featurization is a priori sufficiently complete to represent all future tasks.
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Benefits of FCA

I purposefully rely on concept substates as the vehicle for featurization, as opposed to the

more abstract formal concepts. The reason is that, in grounding concepts to the original

state, it is possible to preserve and differentiate the objects inside the state. For example,

suppose there are ground states s and s′ such that s has two blue objects and s′ has four

blue objects. Now assume that conceptualizing the states creates a formal concept in

both cases with an intent of “{color:blue}.” Note that the resulting concepts differ on

their extents: the one from s would have two objects, while s′ would have four. Without

differentiation among object support, a state abstraction would lack the granularity to

capture this difference, as the “blue” concepts produced s and s′ would both map to

the same abstract intent. For CAFE to preserve the difference, grounding creates more

expressive features based such that ψ(s, cblue) 6= ψ(s′, cblue).

Overall, the FCA-driven featurization is advantageous, because it gives an auto-

mated process of finding concepts, which are portable, semantically relevant groupings

of objects and attributes. Concepts also permit implication inference, clustering, and

measuring various types of similarity, leading to greater model interpretability. Future

explorations of CAFE not addressed in this work include using the hierarchical nature of

concepts directly into the featurization and function approximation computation.

5.2 Contextual Bandits with Concepts

As a first inquiry into the use of concepts for sequential decision making, I leverage

the formulation of such problems as contextual bandits (Section 2.2.1). For contextual
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bandits, the arms comprise the action set, and the context of features describing the arms

constitutes the state (along with any side information).

5.2.1 Object-Oriented Contextual Bandits

I begin my discussion by introducing a new, intuitive way to represent contextual ban-

dits problems: object-oriented CB, a straightforward way of reframing of bandits from a

perspective inspired by OO-MDPs. In this approach, a CB context is represented by an

OO-MDP state. Objects now express either the features of an arm or of side information.

The set of available actions are then parameterized over the objects in the state.

To highlight the representational difference, consider a simple problem domain with

k slot machines, each described by m attributes. The normal contextual bandits setup

would have k arms, and hence k actions that represent pulling the respective arm, with

a context vector of k × m features. The OO-MDP framing instead casts each context

a state with k slot machine objects. The OO-MDP action set consists of one “pull” ac-

tion, parameterized over objects of the slot machine class. Though subtle, this difference

between the standard CB and OO-MDP version is crucial. While the number of fea-

tures remains the same in both cases, considering contexts to be object-oriented permits a

straightforward and principled way of defining and extending problems. That is, any new

side information may be incorporated as an additional object.

Consider the following variation of the slot machine scenario. Suppose there are

both positive and negative payouts from the machines. Further suppose a new type of

side information is added in the form of a beacon. When lit, the beacon indicates that
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the payouts from the slot machines will be inverted. With the object-oriented version of

the CB problem, the beacon can be added as its own object to the state directly, with

no additional manipulation needed (since the action set was already parameterized over

slot machines, and not beacons). Inclusion of another feature in the traditional contextual

bandits may be handled trivially by appending it to the context vector, but expressing

how the action set must be changed is trickier, especially if one eventually wants to have

some side information affect only certain arms. Overall, an object-oriented approach to

CB problems posits that the context may be, quite simply, a set of objects, with the arms

being an action set parameterized over a subset of those objects.

5.2.2 Concept Features & Bandits

The contextual bandits with concepts (CBC) paradigm encompasses any approach using

CAFE to create a lattice of concepts from a given context in a bandits setup. I introduce

CAHL, a CBC algorithm, and describe precisely how concept formation aids decision

making. I analyze the performance of CAHL relative to standard techniques based on

LinUCB (Section 2.2.1) for a set of bandits domains.

5.2.2.1 Hybrid Linear Models

Since concepts are derived from all objects, and rely on the co-occurrence of those ob-

jects’ attribute-values, I elect to employ hybrid linear models in my algorithms. I refer to

LinUCB with hybrid linear models (Algorithm 2 in [90]) as HL, as opposed to LinUCB

with disjoint linear models, which I call L. HL maintains individual models for each arm,
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as in standard LinUCB, but also possesses a hybrid joint model that operates on a separate

feature set potentially derived from all arms. Recall that L relies on independent models

for arms. HL makes these models hybrid, and dependent on the context, with features

derived from all arms. The set of shared features may be supplied arbitrarily, such as

being computed by the outer product of all other features.

Formally, I distinguish the disjoint featurization of used by the arms, φa, from the

φj featurization of the context shared via the joint model. Therefore, the hybrid approach

must be extended beyond the standard, disjoint action-value models of LinUCB (as in

Equation 2.10), with the summation of estimates from the joint and given action models:

Q̂(st, at) = E[rt | st, at] = θTatφat(st) + βT
t φj(st), (5.1)

where βt are the weights of the joint model as learned up to time t. Thus, I call HL the

LinUCB algorithm with action model specified by Equation 5.1. As HL makes decisions,

both the model for the arm chosen and the joint model are updated. Computation of ridge

regression and confidence intervals with hybrid models requires some revision to factor

in terms for the joint model and its parameters, though all the properties of UCB hold; for

a more extensive discussion and HL’s pseudocode, I refer the reader to Li et al. [90].

5.2.2.2 CAHL

The hybrid linear models framework facilitates a separation of features specific to arms,

φa, from those generally applicable to the context, φj . In applying the framework of CBC

to HL, I define an algorithm I call concept-aware hybrid LinUCB, or CAHL. Concretely
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for CAHL, CAFE serves as hybrid LinUCB’s φj such that the lattice extracted from the

context and its derived features are shared among all arms.

CAHL considers a model of each arm separately (given its own features), but also

learns the action-value of concepts as shared across the set of possible arms. The goal,

thus, is for the shared concepts to provide a kernel of knowledge about the kinds of arms

that might appear, constructed incrementally, such that CAHL may better interpret and

adapt to a new anomalous arm. In this sense, CBC addresses the well-known problem

of exploration vs. exploitation. By more gracefully characterizing anomalies the arise,

concepts help bias one’s interpretation of them to reduce the number of harmful rounds

of exploration that would otherwise be needed.

5.2.3 CBC Methodology

I outline the following approaches to contextual bandits:

• L : standard LinUCB, such that φa features are the attributes of the given arm plus

any side information, no φj ,

• HL : standard hybrid LinUCB, such that φa is as with L, and φj are the features of

all arms and side information,

• CAHL: variant of HL, such that φa is as with L, and φj are the concept features

from computing CAFE on all arms and side information.

The disjoint arm models of L all apply the same φa featurization technique. For HL, the

shared features φj are used only in the joint model. I follow the methodology of Li et
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al. [90] and let φj be the outer product of all arm features and side information. CAHL

builds directly upon HL by applying CAFE for φj . In essence, CAHL treats the context

of contextual bandits as it would an OO-MDP state or formal context in FCA. For each

method, I add a bias feature to all arm and joint models.

Together, I apply these algorithms to a variety of domains to investigate the empir-

ical value of concepts and the ability of a CBC approach to handle novelty in the form of

anomalous arms. A summary describing the set of bandits domains I consider follows:

• Synthetic: pick the best of n arms, where an arm’s reward is the dot product of its

m latent attributes and a context of m Gaussians [130],

• Mushroom: pick the one edible mushroom from a set of n mushrooms, where the

others are poisonous [130],

• NetHack Monster level alignment: match the player’s observed level to one of n

monsters’ unobserved levels.

Synthetic

For the Synthetic CB problem, the context containsm Gaussian objects and n arms. Each

Gaussian, g, possesses one real-valued α attribute that varies stochastically, with its value

at state st sampled according to g.αt ∼ N (0.0, 1.0). Hence, a context at time t is defined

asGt = 〈g1.αt, . . . gm.αt〉. An arm, a, possessesm real-valued β attributes that are hidden

from the agent and held constant in every state over the duration of a trial. The value of

an arm’s β attributes are initially generated uniformly at random, a.βi ∼ U(0.0, 1.0).

Further, each arm has two additional latent attributes, a.µ and a.σ, used to add Gaussian
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noise to the reward the arm generates. Upon pulling arm a, reward is computed as the dot

product of the arm’s m unobserved attributes and the known context of the m Gaussian

attributes, plus noise: R(st, a) = a.β · Gt + N (a.µ, a.σ2). Arms, therefore, can be

approximated well by linear models, so I include this domain as a baseline where the

standard algorithm L is perfectly suited.

The Gaussian objects comprise side information (not intrinsic to the arms) and so

are supplied to the model of each arm in L, HL, and CAHL. For the experiments I present,

the setup follows Riquelme et al. [130], such that m = 10, n = 8, a.µ = 0 for all arms,

and each arm is given a different value of σ, from 0.0 to 0.7 in increments of 0.1.

For CAHL, because the domain contains continuous features, I apply a discretiza-

tion technique based on rounding: before execution, a user some specifies integer d, the

decimal places by which to round. Then, during featurization, a separate pseudo-feature

is generated for each decimal place up to the one specified. As an example, if a user

selects d = 4, then for a Gaussian with attribute g.α = 0.12395, the discretization pro-

cess (prior to concept-formation) would generate each of the following separate attribute-

values: g.α:0.1240, g.α:0.124, g.α:0.12, and g.α:0.1.

Mushroom

The Mushroom data set [137], from the UCI machine learning repository [33], is a well-

studied classification problem that has been cast as a bandits problem in recent litera-

ture [21, 130]. Specifically, in a typical CB formulation, a context consists of a set of

five mushrooms (the arms), such that one is edible and the other four are poisonous. The
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one action “eat” is parameterized over each potential mushroom. The goal is to select

the edible mushroom and receive a guaranteed reward of 1.0. Should the agent select a

poisonous mushroom instead, it would receive rewards of either 1.0 or -7.0 with equal

likelihood. Each mushroom contains 22 observable attributes, crucially with one addi-

tional attribute unobserved (the toxicity label, either edible or poisonous). The challenge

of the Mushroom domain for CB extends beyond classification by including the poisonous

mushrooms as confounders that offer considerable noise, since they appear safe half of

the time they are selected. Moreover, as with all bandits problems, only the reward of

the selected mushroom can be observed; the counterfactual reward of those not picked

remains mysterious. Unlike the Synthetic CB problem, there is no side information, only

arm-specific features.

Building a concept lattice on the full Mushroom data set yields around 220,000

formal concepts, depending on the preprocessing of the data [8]. For these experiments,

I remove the mushrooms with missing attributes, leaving a set of 8124 potential mush-

rooms, making it extremely unlikely an agent would ever see the same context twice.

Additionally, to keep the total number of concepts used in CAHL models reasonable, I

limit the minimum support of concepts extracted by CAFE to 3.

NetHack Monster

In the NetHack Monster level alignment CB problem, the agent is presented with a context

consisting of n monsters (the arms) and a player object (side information). The player

has an observed level (an integer representing experience and relative ability), and each
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monster has a set of observable features as well as an unobserved level. The goal is for the

agent to select the monster that has the closest level to its own; the goal reward is 1.0 if

the levels match, otherwise reward is -0.1 multiplied by the distance between their levels.

To generate the arms, one action type “attack” is parameterized over each monster object

in a given context. An agent must choose the monster most analogous to itself in terms of

level. I motivate this goal as a proxy simulating the choice an agent would routinely face

while playing NetHack: among the monsters in its current context, an agent must decide

which is most worthwhile to attack (with a level most similar to its own experience), such

that weaker or much stronger monsters have diminishing returns. The decision posed by

this problem is similar to classification, but requires the algorithm to distinguish the best

choice among several options, except with additional information of a label to match (the

agent’s level) given beforehand. Unlike both the Synthetic and Mushroom CB problems,

this domain contains both side information and arm-specific features.

To create the data set for level alignment, I limit the monsters to those between

levels 0 and 10, obtaining 277 monsters. For each episode of CB, there are n = 5 monsters

available, with one guaranteed to have an unobserved level matching that of the player.

5.2.4 CBC Results

I examine the utility of a CBC approach in the Synthetic, Mushroom, and NetHack Mon-

ster problems. Result plots include 95% confidence regions.
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5.2.4.1 Synthetic Results

The results of L, HL, and CAHL in the Synthetic domain can be seen in Figure 5.2.

The algorithm that achieves the best regret (reflected here as the higher reward curve) is

L, the default LinUCB formulation. These results are as anticipated, since the arms of

this synthetic problem can be nearly perfectly modeled by the linear assumptions of L.

Because HL and CAHL compute a joint model, they require more exploration simply to

learn over the shared features. However, the hybrid linear models simply add a burden

to the sample complexity that is not offset by their value. More precisely, the rewards

produced by the arms are linearly independent (depending only on the context of side

information), so learning disjoint models of each arm separately is sufficient to solve this

CB problem. Likewise, the regret of CAHL is worse than HL (it obtains less reward

in Figure 5.2) because it is learning a joint model over even more features. Note that I

include a Random agent here to show the benefit of learning; I omit Random from other

experiments since the same trend is observed.

Where the asymptotic trends for both L and HL are roughly parallel, CAHL suffers

a slightly more linear trajectory. I account for this observation in remarking that the non-

linear expansion of concepts (through discretizing the Gaussian objects’ attribute-values)

makes it more difficult to construct reliable confidence regions in feature space. More-

over, learning concepts (or any shared features) does not add information to help solve

the domain. Specifically, the reward function for an arm a depends on the linear com-

bination of the Gaussian objects and it’s latent a.β attributes. Forming concepts on the

Gaussian objects provides little to no predictive value, because the way they affect reward
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Figure 5.2: Results of LinUCB methods on the Synthetic CB problem, 30 trials.

is arbitrarily dissimilar across arms: the underlying β values are uncorrelated. Thus, since

there is no extrinsic pattern or informative distribution underlying the generation of the β

values of arms, no arm is like another. The Synthetic CB problem thereby eschews one of

the key assumptions for anomaly reasoning and concept formation, that meaningful cate-

gories of objects exist in the environment, and can ultimately be seen as clusters in a vector

space representation of the world. This domain plays an important role as a benchmark,

demonstrating that even when the CBC assumptions are violated and applied to a continu-

ous context where linear models are sufficient, CAHL can still learn approximate models,

just under the caveat that feature complexity is traded for asymptotic performance.
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5.2.4.2 Mushroom Results

Results on the Mushroom CB problem are reported in Figure 5.3. As opposed to the

Synthetic problem where arms had no attributes and side information was passed along to

each, here arms have many attributes and no side information. Because learning to esti-

mate the expected reward of a mushroom is independent of other arms in the context, the

disjoint models of L perform fairly well. By around 400 episodes, L attains a flatter re-

ward curve and begins to readily pick out the edible mushroom while avoiding poisonous

ones.

Conversely, HL struggles learn decent models in the 500 episodes plotted, attaining

consistently worse regret. This observation may be explained in part due to HL’s increased

sample complexity over L, as in the Synthetic CB problem. HL requires more time to

collect samples to learn the large number of weights for its shared features.

More weights are not inherently an impediment to learning, as is reflected by the

results of CAHL. Though CAHL has a sizeable joint model and set of shared features,

as HL does, it manages achieve a curve similar to and exceeding L, circumventing the

apparent burden of sample complexity. Even in the earliest episodes, CAHL suffers less

negative reward and begins to pull ahead of HL. This trend highlights how CAFE, though

making minimal assumptions about the structure of data, can generate features that en-

hance learning in the face of uncertainty.

With each new context, CAHL must consider mushrooms it has never encountered

before, thus generating one or more new concepts from these anomalies. However, these

anomalies will yield concepts that CAHL has seen before, which allow it to weigh its de-
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Figure 5.3: Results of LinUCB methods on the Mushroom CB problem, 30 trials.

cisions in terms of the anomaly’s abstract similarity to what it knows. Recall that FCA al-

lows us to find a natural hierarchy of objects, grouped and ordered by their attribute-vales,

abstractly. Inherent to the use of CAFE, then, is the assumption that one can interpret and

adapt to anomalies by their membership in these formal concepts. Here, that property

suffices to account for the difference between CAHL and HL: CAFE’s abstract features

allow a more immediate and implicit mapping of novel objects to those that are similar,

beyond what raw features allow. Thus, in applying CAHL to the “real-world” data of the

Mushroom domain, it can be confirmed that CAFE is both reasonable and beneficial in a

decision-making context. In Section 5.2.5 I further discuss how concept formation as a

featurization technique offers worthwhile benefits over simpler models like L.
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5.2.4.3 NetHack Monster Results

I present the results on the NetHack Monster level alignment CB problem in Figure 5.4.

Due to the diversity and number of arms, as well as the presence of side information,

learning takes much longer in this domain. The challenges of the previous tasks are

intensified: not only must the agent select the correct arm given unobserved labels, it must

condition this decision based on its own (observed) level. In a sense, my experiments have

progressed from examining anomaly interpretation as a basic, naı̈ve form of classification,

through a kind of contextual classification as with the Mushroom domain, to the complex

alignment problem faced here.

In Figure 5.4, CAHL consistently exceeds over L and HL, both in terms of raw cu-

mulative reward and asymptotic trend. L and HL achieve roughly the same performance

as each other. The stability of CAHL, as represented by the confidence region in Fig-

ure 5.4, also holds over the episodes. In contrast, for both L and HL, their variance in

performance across trials increases as they go further out.

The learning curve of CAHL manifests a property of CAFE: early investment in ex-

ploration of (conceptual) feature space pays dividends in later performance. Until around

episode 10000, CAHL achieves a reward that is about the same or worse as the other

methods; beyond that, it excels. Initially, in the first hundreds of episodes, CAHL dips

into a trough of negative reward. Upon examination of trial rollouts, CAHL consistently

picks monsters that are not only new to it, but especially if they have unknown (and thus,

dissimilar) concepts to what it has seen before. This application of UCB, then, means that

CAHL pays a reward cost up front to learn about novel features. However, by approxi-
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mately episode 5000, CAHL acquires good enough joint and arm models. From then on,

it is on a steeper reward trajectory that ultimately surmounts L and HL, overcoming the

trough of its initial negative performance. CAHL thus pays more to learn about concepts,

but then uses this knowledge to handle new contexts more effectively.

From these collective observations it may be gathered that CAFE enables CAHL

to adapt more readily. CAHL leverages the benefits of upper confidence exploration,

while introducing CAFE’s inherent transferability such that, as concepts are learned, that

knowledge compounds its ability to interpret and adapt to anomalies. The problem of fac-

ing a novel monster is not just understanding that anomaly alone, but how it interacts with

the agent’s level attribute, relative to the other (potentially anomalous) monsters. CAHL’s

hybrid kernel of concept features means that anomalous objects are always interpreted in

terms of their membership in multiple abstract clusters. This process translates into more

informed, and therefore steadier and safer, decisions.

5.2.5 CBC Discussion & Analysis

My goal with these experiments is to gain insight into the practical benefits afforded by

CAFE in a contextual bandits context.

5.2.5.1 Automatic Feature Clustering

As a feature generation technique, CAFE makes a minimal assumption about the nature

of data by applying the theory of FCA. The result is a process of extracting meaningful,

abstract features in a principled and automatic manner.
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Figure 5.4: Results of LinUCB methods on the NetHack Monster level alignment CB
problem, 30 trials.
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L and HL consider the literal features of objects in the context. In contrast, CAHL

incorporates new clusters of features on the fly, rather than enforce that new data adhere

to procrustean constraints. For example, prior work has made the case for dimensional-

ity reduction as a pre-processing step. By converting all input data (arm features) into

a few clusters (e.g., six), contexts would essentially be encoded as low-dimensional em-

beddings [90]. However, this practice assumes up-front data collection, the application of

offline cojoint analysis, and much expert engineering to design. My results reflect how

CAFE achieves feature clustering automatically, while attaining improved performance

using an expanded, rather than collapsed, set of features. Specifically, as opposed to the

small, dense embeddings of previous work, CAHL operates over sparse feature vectors

on the order of hundreds to thousands of entries.

While the CBC approach requires no prior expert knowledge or intervention, I ac-

knowledge that one hyper-parameter does remain: the minimum object support for con-

cept formation. I suggest this setting may be configured by random search, intuition,

or left simply at zero. This hyper-parameter does bring a benefit: it permits a tuneable

level of abstraction, such that a designer can inspect how agents perform on increasingly

restricted clusters of features.

5.2.5.2 Concept Meta-Graph Visualization

To visualize feature clusters, I develop software1 that plots the partial ordering of all

concept substate features extracted over the course of a trial, and their associated learned

weights. I refer to this structure as the concept meta-graph.

1I use D3.js, https://d3js.org/.
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Definition 5.2 (Concept Meta-Graph). The concept meta-graph 〈Z,≤〉 is a par-
tially ordered set of concept substates Z and the partial ordering relation ≤ on
the intents of concept substates. Let z.o ∈ N be the concept’s object support,
and z.m ⊂ M represent its intent (a set of attribute-values). For zi, zj ∈ Z ,
zi ≤ zj ⇒ zi.m ⊆ zj.m.

An example meta-graph can be seen in Figure 5.5. Importantly, this image is not

of a concept lattice since it was not constructed from a single context and lacks a unique

infimum. Rather, this image reports the hierarchical relationship of all concepts seen by

the agent, along with behavioral information as represented by the nodes. Each node

represents a concept (substate) feature z ∈ Z , and its learned weight θi for zi, given the

agent’s weight vector θ. The size of the node conveys the relative absolute magnitude of

θ. Specifically, all non-negative weights were normalized between 0.0 and the maximum

weight, and all negative weights were normalized between 0.0 and the minimum weight

(so, the more negative a weight is, the larger it is). A node’s color is blue if θi is positive

or orange if negative. Thus, a large blue node signifies a strong positive weight, while

a large orange node represents a strong negative weight, and smaller nodes are concepts

with weights closer to zero. A directed edge between nodes shows the partial ordering of

superconcept to (an immediate) subconcept, based on their intents. The length of an edge

represents an approximation of the Hamming distance between the two concepts’ intents.

In the meta-graph renderer, I apply physics-based repulsion and gravity such that

dissimilar concepts exert greater force upon each other, and concepts with larger intents

are pulled downward. Thus, nodes towards the top of the diagram tend to be more abstract

(but, due to exerted forces, are not guaranteed to be), while those towards the bottom tend

to represent more specific concepts. The highest node in the meta-graph corresponds
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Figure 5.5: The meta-graph of concepts extracted in a single trial of 500 episodes for the
Mushroom CB problem. The labels at the top describe the highlighted node (in red, at
the lower right), which has 13 attribute-values and an object support of 3. The size and
color of the node indicates CAHL has learned a large negative weight for this concept,
as reported at the top: when this concept is observed for the “eat” action, it would add a
weight of around -8.6212.

to the top concept, and it possesses the smallest intent (containing only those attribute-

values common among all objects). I also enforce a minimum node diameter to keep them

visible.

5.2.5.3 Explanations and Interpretability

The dual goals of explainability and interpretability have gained prominence and attention

in recent literature [53]. While these terms are colloquially synonymous, I differentiate

them, defining the former as more holistic and the latter more fine-grained. Specifically,

108



Figure 5.6: The meta-graph of concepts extracted in a single trial of 2000 episodes for the
NetHack Monster CB problem.
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with explainability I refer to an algorithm’s ability to supply answers to “why” questions

an observer might ask. Interpretability, alternatively, refers to a quality an algorithm

possesses if its constituent parts can be easily characterized or understood upon human

inspection. The subtlety of these terms comes into play for CBC in its anomaly reasoning

capacity, explaining how it adapts to new objects (answering the question, “why did you

select that action?”), and offering an interpretable knowledge base (learned weights for

concept features).

The concept meta-graph of Figure 5.5 shows one trial of CAHL applied to the

Mushroom domain, with a node highlighted (outlined in red) for a concept substate with

13 attribute-values and an object count of 3. At the top, there is a list of that concept’s

attribute-values, its object support, and the learned weight for each action. For the Mush-

room domain, there is only one (parameterized) action, and thus one weight. In this case,

the weight is negative, as reflected by the node’s color, and is one of the larger weights

learned, as evidenced by the node’s size. This property embodies the interpretability of

concepts as features: one can understand how an agent associates an action with a concept

(positively or negatively), within the context of all other concepts. A key takeaway from

this diagram is that most concepts have small (near-zero) weights, and are not relevant to

the totality of its knowledge. Moreover, most concepts are weighted positively, with the

effect of amplifying the impact of negatively weighted concepts when they are present

A general explanation of the results can, as a whole, be seen in terms of the handful

of concepts with weights that dominate the direction of an agent’s decisions. Recall that

CAHL has a model for each arm—in this case one model for the “eat” action—using

just the grounded features (of mushrooms), and that the separate joint model factors the
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concepts derived from all mushrooms in the context. Thus, the visualized meta-graph

captures how safe or dangerous the given context is overall (not the safety of individual

mushrooms).

Clearly, concepts would offer only marginal benefit when a mushroom is easily cat-

egorized as edible or poisonous based on its raw features. However, my results demon-

strate that concepts give a boost over L, indicating that they help guard against the selec-

tion of dangerous mushrooms. Specifically, concepts mitigate the effects of anomalies.

Consider an agent has been learning and encounters a new mushroom that appears

safe to eat, based on its raw features, but is actually poisonous. Where L must make

an assessment of an anomalous mushroom solely on its own merits, CAHL also takes

into account the anomaly’s conceptualization. Further suppose L incorrectly considers

it safe, while CAHL recognizes the danger. It may be reasoned that, in order to have

made this decision, CAHL must have learned negative weights for concepts associated

with the anomaly, large enough to offset the positive weighting of the arm model. Thus,

in generating an explanation of how CAHL appropriately adapts to unknown objects, one

recognizes that the most negatively weighted concepts in the meta-graph must correspond

to edge cases that appear safe on the surface but are actually bad. For the most positively

weighted concepts, a similar conclusion can be reached vice versa, such that they help

handle cases of anomalies that appear negative but are in fact good (and may be repre-

sented so, conceptually).

Finally, due to the poor performance of HL in the Mushroom domain (Figure 5.3),

it may be concluded that concept features are more valuable than simply taking all arm

features as the shared context. I contend that the abstract nature of concepts plays a de-
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cisive role in their ability to more quickly adapt to uncertain objects. As latent groupings

of features, concepts help characterize novel objects more readily, such that an anomaly

would have to be wholly unfamiliar to not receive some initial conceptual bias. The inter-

pretation of anomalies done by CAHL, then, helps explain the agent’s decisions not just

in terms of any one object, but of that object contextually at several levels of abstraction.

5.3 Concept-Aware Reinforcement Learning

I now turn to decision making in which an agent’s actions have a direct effect on the envi-

ronment, reinforcement learning (RL). The CBC methodology demonstrated the viability

of concepts as a vehicle for increasing generalization and transfer across new and anoma-

lous objects; however, it did so under the assumption that successive contexts lacked any

causal connection. As opposed to CB problems, in RL the agent must consider feedback

from the environment, where the next visited state depends on the action just taken, de-

termining long-term reward based on this sequence of transitions. An agent operating

from the vantage of a Markov decision process observes its state, takes an action, and

transitions to a successor state as a direct consequence. Because reward in RL depends

upon the transition and successor state, the expected cumulative reward is recursively de-

pendent on all future actions. Thus, in this section I seek to uncover the applicability and

properties of CAFE when used to abstract states over longer periods of time, when each

successive decision influences the next.
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5.3.1 Concept Features & Temporal Difference

Concept-aware reinforcement learning (CARL) encompasses algorithms that rely on CAFE

to approximate the action-value function (Q̂θ). In this dissertation I consider temporal dif-

ference approaches, in which a value function is learned by bootstrapping from experience

(as described in Section 2.1). I implement and analyze two novel approaches: concept-

aware Q-learning (CAQL) and concept-aware SARSA with eligibility traces (CASARSA(λ)).

In reference to VFA, I refer the reader to Section 2.1.2, in particular Equation 2.6.

Using CAFE as the VFA technique is more straightforward for CARL than CBC, since

there is no separation of objects versus side information, and I use one model (for the

action-value, rather than one per action). As before, I consider the linear case, where an

agent’s goal is to learn a parameter or weight vector θ. On each time-step, the state s and

action a serve as the input to CAFE by which I attain the φ(s, a) featurization. Note that

this process is identical to CAFE as defined in Definition 5.1, just with features factored

across each action, as is standard for action-value function approximation [149].

I include pseudocode for CAQL in Algorithm 1. I apply CAFE to an action-value

function approximation scheme, updating as in gradient descent Q-learning [113]. For

CASARSA, I follow the same principle, using CAFE in the function approximation for

gradient descent SARSA(λ) [132].

In terms of anomaly reasoning, CARL methods can be viewed as implementing

HIGHLIGHT, ADAPT, and UPDATE. The HIGHLIGHT process is handled by computing

the function approximation based on the concept states present, and ADAPT selects an ac-
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Algorithm 1 Concept-Aware Q-Learning

1: function CAQL (OO-MDP 〈S,A, T, R, γ〉, terminal condition τ : S → {0, 1})
2: Set tmax, maximum time-steps for the episode
3: Get the initial state s0, initialize Q̂θ, weight vector θ, and learning rate α
4: t← 0, Z ← ∅
5: while t < tmax and not τ(st) do . while episode has not terminated
6: (O,M, I)← ρ(st) . convert state to formal context
7: B← Γ(O,M, I) . build concept lattice
8: C ← COUNT(B) . convert formal concepts to abstract concepts
9: Zst ← Ψ(st, C) . generate the concept substates

10: Z ← Z ∪ Zst . Subsume new concepts, expand φ for each new element
11: Q̂θ(st, a)← θTt φ(st, a), ∀ a ∈ A . compute the Q-value of each action
12: Select at, e.g., based on Q̂θ(st, at) using a Boltzmann or ε-greedy policy
13: Execute at, observe successor state st+1 and reward rt
14: θt+1 = θt + αt

(
rt + γmax

a∈A
Q̂θ(st+1, a)− Q̂θ(st, at)

)(
∇Q̂θ(st, at)

)
15: t← t+ 1

tion according to a policy based on the action-value it is approximating. Both procedures

use the appropriate parameter update rule as defined in Equation 2.7.

Complexity

Considering computational complexity, CAQL is similar to QL, which isO(|A|) per-time-

step in general, orO(log |A|) if using a max-heap priority queue [146], with an additional

term for concept generation. The parameter-wise updates are linear in the number of

features, so approximate QL has per time step complexity of O(d|A|) for d features.

For CAQL, generating formal concepts must be done per state visited. Recall the

CAFE uses IN-CLOSE2 to extract formal concepts. Its asymptotic worst-case time com-

plexity has been shown to be O(|B||O||M|2) [164]. To obtain the concept lattice, I

use Lindig’s UPPERNEIGHBORS algorithm that proceeds bottom-up, starting with the

zero concept found by IN-CLOSE2, recursively finding the parent concepts of each given
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concept, with worst case complexity of O(|B||O|2|M|) [93]. Therefore, one obtains a

single-step concept formation complexity of O(|B||O|2|M|2). Since every state maps

to exactly one set of concepts, each state needs to have its concepts computed only once

(the first time it is visited) and cached. The mapping of states to concepts (and the re-

sulting concept states) can also be stored in a constant-time lookup table. I note that

k|Bt| = |Zt|, with k > 1 only when an expert has specified held-out attribute-values

(meaning there will be multiple groundings of a formal concept to a state), which merely

increases the number of concept states by a constant factor. Thus, there is an upper limit

to the number of times concept generation must be performed for a given domain: |S|.

Given a maximum of tmax time steps and the set of all concept substates Z , CAQL

has a total computational complexity ofO(tmaxd log(|A|)+ |Z||O|2|M|2). Due to the as-

sumption of task relatedness in the domains I examine, I observe that |O|2, |M|2 < |Z| =

d � |S|. Thus, the added increase in complexity is more reasonable than the worst case

makes it seem, and in principle grows linearly with |S|. Similarly, space complexity in-

creases only by |Z|, assuming lattices are stored for caching purposes. It is also important

to note that the purpose of making temporal difference learning algorithms concept-aware

is not to improve upon their efficiency, but to jumpstart performance in future tasks by

paying some computational work upfront to capture abstract representations.

5.3.2 Transfer of Concepts

The nature of VFA in RL facilitates generalization. VFA forces an agent to learn behav-

iors represented by a surface (the value or action-value function) in a vector space, relying
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on features such as state factors as opposed to states themselves as discrete symbols. An

agent reuses knowledge such that previously seen features appearing in new states for

novel tasks or domains already have a learned weight associated with them [149, 154].

Transfer for RL in this case consists of preserving the weight parameters θ from solving

one source MDP to the next (target) MDP.

For VFA paired with CAFE, one observes that transfer is granted the added benefits

of abstraction, extensibility, and interpretability as discussed in Sections 5.1.3 and 5.2.5.

In addition to transferring learned weights, the canonical orderings of attribute-values

must also be transferred (to preserve the ordering of feature space, Z). The cached state-

lattice mapping can also be retained to speed learning across episodes.

Transfer inherently biases learning by associating behaviors with aspects of the

state, so the similarity of source to target tasks can greatly affect the success of transfer.

Tabular representations are more challenging to transfer; in general, they must retain

the table of Q-values which are only applicable if the same index, a state-action pair,

is visited in the target MDP [154]. For the action-value function approximation of CARL

algorithms, successful transfer depends on the ability of concepts to capture meaningful

actions in the source task that also apply in the target task.

Algorithms using tile-coding, which I henceforth refer to as “CMAC,” also use lin-

ear VFA. However, CMAC approaches utilize pre-designed static tilings over state space

(thereby requiring the full range of factors in state space to be known a priori). To transfer

the tilings from source task to target task when the underlying state space is larger (for

example, additional state factors), I apply a straightforward “behavior transfer” activa-

tion mapping procedure used previously in literature [153]. This strategy has us copy the
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learned weights to the new tilings whose old tiling was a subset of the new one (possible

again since it is assumed one knows the full range of factors). To handle new features,

weights for tiles activated by existing factors are initialized to their weight copied in, else

zero. Note that the action space remains constant in both experiments (if it increased from

source to target task, transferring tiles would required additional engineering to design a

solution accounting for the new actions). This difficulty in transferring learned weights in

linear VFA is a key motivation for CARL, as a mechanism that inherently scales to new

features and transfers in the weights for all those known.

In the case that training biases certain behaviors that are not useful to the target

domain, an agent may suffer negative transfer and have to unlearn tendencies before

coming to a solution, whereas an agent starting from scratch may learn to solve the task

faster (yet of course, this newly initialized agent is not general). Thus, an overall chal-

lenge of transfer learning is thus to ensure the agent is general enough to adapt such that

negative transfer does not outweigh the benefit of transferring knowledge. There is not a

consensus when it comes to designing source and target domains, primarily because the

degree of task relatedness between source and target is difficult to measure [154, 155].

In my experiments, I address this issue by train the agent on a task universe, with sam-

ple MDPs pulled from a distribution related tasks, but target a universe with an overall

harder, more complex goal. The following sections elaborate on this idea and the specific

train/test transfer methodology employed for each examined domain.
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5.3.3 CARL Methodology

As described in Section 2.1.1, an OO-MDP is a natural and extensible way to express

complex RL and planning domains. As the number of objects increases, the size of the

state-action space increases combinatorially, approaching intractability for methods with-

out VFA. Thus, I evaluate CARL algorithms on such domains, taking advantage of their

states’ definition as sets of objects to apply CAFE straightforwardly. In each domain in-

vestigated, the source and target tasks are identical except for variations at the object level

(different attribute-values like color and shape, increased numbers of objects), emulating

the kind of variety a robot would be expected to encounter in a natural environment.

I seek to examine the effect on transfer of using (abstract) concept features in com-

parison with grounded features. Thus, I elect to contrast CAFE with CMAC, a standard

technique for linear VFA. CMAC works by specifying regular tilings across all state fac-

tors in state space, using each cell as a feature. As a sparse method based on the co-

incidence of state factors, I consider CMAC featurization to be directly comparable to

CAFE, except that CMAC focuses solely on grounded features, whereas CAFE consid-

ers abstract clusters. I contrast CARL methods with two CMAC ones: CMACQL and

CMACSARSA(λ). In my experiments, their performances are assessed in reference to

baseline methods learning from scratch (QL and SARSA(λ)).

5.3.3.1 Domains & Tasks

I consider two domains, Traffic Light and Cleanup, in which I measure the benefit of

learning and transferring concepts from a source task to a target task.
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In terms CAFE settings, I introduce new “has” indicator attribute-values. Taking

each object in a state, CAFE appends one new attribute-value per attribute of the object’s

OO-MDP class. For example, an object with just a color and a shape would have the

two literal color and shape attribute-values, as well as two new attribute-values indicating

that the object has a color and has a shape (in general). This process allows, for example,

formal concepts to be generated beyond specific values, capturing the more general notion

of objects that have any value of that attribute at all. The concept lattice in Figure 5.7b

includes instances of these attribute-values. In all experiments, I leave the minimum

object support at zero.

Traffic Light

The Traffic Light (TL) domain presents a simplified driving scenario in which the agent

assumes the role of a vehicle waiting at an intersection. The agent must decide at each

time-step whether to go or to wait. Each state consists of a traffic light (either green or

red), some number of cars of various colors, and an agent that tracks its progress. The

traffic light always begins as red, and whenever the agent waits, the traffic light switches

color. If the agent chooses to go when the traffic light is red, the episode terminates. If

the agent elects to go when the traffic light is green, the agent’s progress is incremented;

the episode terminates and the agent receives a positive reward once the progress counter

reaches some predetermined threshold number referred to as the horizon. Thus, the goal

of TL is to go when the light on a traffic light is green, such that the optimal policy is

always to wait once for the traffic light to turn green and then go n times until the horizon
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is reached.

I use TL-n to refer to a specific instance of a TL task with a horizon of n. Each

task may have any number of cars, each with the shape “car” and one of among ten colors

(including red and green) selected uniformly at random. Transitions are deterministic.

Reward is sparse, with +1 given upon reaching the progress threshold.

My goal in experimenting with TL is to understand the value of CARL over stan-

dard approaches for transfer in a minimal MDP example. The inclusion of cars adds a

form of noise to the domain, straightforwardly increasing the degree of task complex-

ity by including objects that are ultimately irrelevant to the task’s solution. Introducing

this confounding element makes learning harder for tabular methods, but also challenges

CARL algorithms by adding a substantial degree of knowledge that is wasteful to transfer.

Ultimately, I seek to show that CARL algorithms surmount these obstacles to learn the

importance of the most relevant concepts (that “green traffic light” has higher value than

“green car” or just “green”).

Cleanup

The Cleanup domain presents the agent in a gridworld environment composed of rooms,

blocks, and doors. The aim of Cleanup is to simulate a robot with the goal of tidying a

house by putting blocks where they belong, similar to the game of Sokoban [95]. Room

objects may have any color and take any width or height. Blocks possess a color, shape,

and x-y coordinates; they must be pushed and pulled into certain rooms. Door objects

have the same attributes as blocks, and they are always placed along the wall between
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(a) Example starting stat with a
red light, no progress, and six
cars (two green, one each of or-
ange, black, red, yellow). (b) The concept lattice derived from the state to the left.

(c) Example penultimate state
from the same task of Fig-
ure 5.7a, now with a green light,
and nearly finished progress. (d) The concept lattice derived from the state to the left.

Figure 5.7: Example states from the Traffic Light domain and their concept lattices.

(a) Example starting state. (b) The concept lattice derived from the state to the left.

Figure 5.8: Example state from the Cleanup domain’s Cardinal Closets task and its con-
cept lattice.
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two rooms. The agent also has shape, color, x-y coordinates, and an attribute for the

specific direction it faces. The agent may move one step in the cardinal directions, or a

take a “pull” action, allowing the agent to swap positions (and its direction) with a block

if one is immediately in front of the agent. Upon moving in the direction of a block,

the agent pushes the block forward if possible (not further blocked by a wall or another

block).

I describe the particular task universe of Cleanup in the experiments as Cardinal

Closets (CC-n). In CC-n, the agent exists in a central room containing n blocks each of a

random color in a random position, and four closets of different colors that are connected

to the central room in the cardinal directions. The goal is to maneuver one specific block

into the room of the matching color. Variant domains can be described by including

more blocks (of different colors). Transitions are deterministic. If the agent’s action

results in no state change (i.e., a self-transition of st = st+1) then it receives a reward

of −0.0001, otherwise it gets a reward of only 0.0 until a terminal goal state is reached

(+1.0). CC in particular is challenging because the optimal policy for agent navigation

changes completely based on the color of the goal block (i.e., if the block is red then the

agent must manipulate the block towards the north, or south if the block is yellow). So, in

some sense, CC wraps four tasks in one. Moreover, the nature of the central room means

that an agent continually runs into corner cases and states in which a block is against a

wall, requiring the agent to maneuver precisely to pull the block away from the wall into

a position where it may be pushed. It is important to note that the size of these domains

is considerably different, as each added block grows the state space combinatorially (e.g.,

CC-1 has on the order of thousands of states; CC-2 has tens of thousands).
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5.3.4 CARL Results

I follow a training-testing pattern for evaluating transfer. An agent first learns on a set of

training domains to solve a source task and then is evaluated on another set of domains

to solve a target task. Domains for both the source and target tasks are drawn randomly

from the same distribution, though the target is an alternative, more complex variant of

the source task.

The algorithms I assess are QL and SARSA(λ), as the tabular non-transfer base-

lines, as well as CMACQL, CMACSARSA(λ), CAQL, and CASARSA(λ). The CMAC

pair transfer experience in the form of weights associated with tiling of state space, while

the latter two transfer concept feature weights (θ and the canonical orderings of features

serve together as the knowledge base K for each agent). During training, I record the

agent’s knowledge K upon completing a trial, and then freeze and transfer the averaged

value of K to the target task, reloading the transferred K for each of those evaluation

trials. For the former two algorithms, transfer is straightforward in that the entire Q-

table is persisted from task to task. For the CMAC algorithms, I use eight tilings and

pre-configure them with the number of objects and the range of possible values for every

attribute. In assessing my results, I also confirmed that each of the CMAC and CARL

methods with transfer improved over an identical version training from scratch (without

transfer) when run on the same experiment trial (same random seed).

In the plots of the results, I report the 95% confidence interval as represented by

the shaded regions around each graphed line. These experiments also used the same

parameters: a γ = 0.99 discount factor following an epsilon-greedy exploration policy
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with ε = 0.10 and constant α = 0.01 learning rate. SARSA and CASARSA employed a

λ = 0.75 trace decay.

5.3.4.1 TL Results

Training consisted of 100 trials on a TL-5 task containing six cars. Evaluation was done

over 50 trials on the TL-10 task, again with every state containing six random cars. All

algorithms were given 300 episodes, each with a maximum of 100 steps.

The results of training in TL are shown in Figure 5.9. In regarding the cumulative

reward, it is clear that every algorithm eventually solves the problem. The number of

steps reveals finer-grained functional differences among them. In general, the SARSA

methods are more stable, in large part because their on-policy nature combined with eli-

gibility traces makes them more effective at control, avoiding transitions that lead to early

termination. QL methods explore more, such as in CAQL where more episodes terminate

early (exploring the effect of running a red light), and later episodes take longer than nec-

essary (exploring waiting at various points up to the horizon). Both CMAC algorithms

readily solve the task; they rely on the simplicity of the domain, where the optimal action

depends linearly on one state factor (the light’s color). By contrast, the CARL algorithms

take longer: they have more features to learn in general, but must also disentangle the con-

cept of green lights from green cars (and the color green in general). This behavior is as

anticipated: concept features take time to learn, but increase performance when deployed

to handle novelty and anomalous features.

Figure 5.10 presents the evaluation performance after transfer on the TL-10 task.
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Figure 5.9: Training results for 100 trials of TL-5 with six cars.
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Figure 5.10: Evaluation results in terms of the number of steps and the cumulative reward
for 50 trials of TL-10 with six cars, transferring knowledge from the TL-5 task.
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Here, it may be observed that the concept-aware methods receive an immediate jumpstart

transfer, solving the domain from the first episode onwards. This behavior is seen clearly

in the plot of the number of steps, where CAQL and CASARSA take around ten to fifteen

steps (and reach the goal), where the other methods terminate prematurely.

It can be seen that the CMAC tilings, representative grounded features, fail to trans-

fer as well as the more abstract concepts. In fact, they perform only as well as the non-

transfer baseline of SARSA. I offer an explanation: the grounded nature of the CMAC

features hinders their ability to transfer. Specifically, they learned knowledge of how to

act by correctly associating large weights for “go” when the traffic light was green; how-

ever, such tilings also included the progress attribute-value of the agent, so beyond five

steps the algorithms did not know how to react. Thus, the CMAC algorithms terminate

early and as often as SARSA, which is learning from scratch.

The CARL algorithms leverage their knowledge of abstract concepts to receive this

boost; part of my motivation for investigating TL is to demonstrate this effect clearly,

in a minimal example. Inspecting the weights associated with concepts after training

reveals how they achieve transfer. In particular, the feature-action pair with the largest

weight is for the concept state corresponding to {shape:light, color:green} and action “go”

with a value of 7.625. Symmetrically, the pair with the smallest weight is {shape:light,

color:red} and “go” with a value of −7.388. The concept-aware algorithms find approx-

imately 12 concepts per state (hence, 24 feature-action pairs), with a total of 61 concepts

(the final |θ| = 122) across all states. Asymptotic performance in TL is also increased

when using concept-aware algorithms, particularly for SARSA which follows a more

consistent policy than the QL approach.
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Overall, the TL experiments highlight, in a constrained example, the ability of

CAFE to capture high-level feature clusters for VFA, facilitating knowledge transfer to

a more challenging task. As witnessed with CBC, I illustrate how concept features per-

mit anomalies (in this case, new states closer to the horizon) to be interpreted correctly.

Thus, the results indicate that concept-forming temporal difference agents can success-

fully adapt based in terms of choosing what action to take in an RL setting.

5.3.4.2 CC Results

I now consider CARL in a more complex MDP scenario, with transfer from one-block

tasks (CC-1) to those with two blocks (CC-2). For setup, all algorithms are given 1000

episodes each trial with a maximum of 1000 steps. Training was done on 100 trials for

CC-1, and 50 trials of CC-2.

The results of training are shown in Figure 5.11, while Figures 5.12 and 5.13 show

the performance after transfer on the evaluation domains. In general, the tabular meth-

ods take longer to learn (as expected), and QL does not find a reasonable policy in the

episodes allotted. CMACSARSA performs best, quickly finding a policy that minimizes

the number of steps to the goal state. However, this result is at the expense of exploration

(as will be seen in the evaluation results), with the result it will learn less information to

transfer. CMACQL and the concept-aware algorithms perform roughly the same: they

take around 600 episodes to learn a decent policy. In contrast with CMACSARSA, these

algorithms require more exploration before homing in on a solution. They also suffer from

larger variance in the number of steps in later episodes, again due to a larger propensity
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for exploring.

In evaluation, one can see the ability of the concept-aware algorithms to persist and

transfer the knowledge they acquire more effectively than their CMAC counterparts. In

Figures 5.12 and 5.13 it is evident that concept-aware algorithms more quickly adapt to

the greatly expanded state space of CC-2. Their performance much more closely matches

that for CC-1, whereas QL and SARSA suffer from the increased size of the domain.

Both exhibit a jumpstart boost in performance from transfer. In comparison to CMACQL,

SARSA, and QL, the CAQL and CASARSA also yield better asymptotic trends. CMAC-

SARSA benefits from transfer as well, approximating CAQL’s performance, but in a more

muted way than its more direct analogue of CASARSA. CMACQL also occasionally ex-

hibits negative transfer, in that it can underperform relative to another CMACQL agent

without any transferred weights (in contrast to CMACSARSA and the CARL methods,

which always improve with transfer).

The highest valued feature-action weights are for concepts associated with a block

being in the door adjacent to the block’s respective goal room, paired with the navigational

action that transitions to a goal state (e.g., “north” if a red block is inside the door to the

red closet). Other highly valued weights include those for concept-action pairings that

align the block with the door and goal room, or otherwise manipulate it out of a corner. In

total, the concept-aware algorithms find 466 distinct concept states, and thus 2330 feature-

action pairs (the final |θ| = 2330) across all states from all domains. Each state in CC-2

has on average 40 concepts. Thus, the space of concept-actions is considerably smaller

than the state-action space of CC-2, explaining why action-value function approximation

with CAFE grants both the benefits of jumpstart transfer and increased asymptotic perfor-
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mance. The ability of CAFE to achieve a condensed, semantic compression of state space

when objects’ attributes can take many possible non-numeric, qualitative values (such as

color and shape), as indicated by these results, is promising for further development of

explicit anomaly reasoning for planning and reinforcement learning.

5.3.5 CARL Discussion & Analysis

CAFE is not always an ideal approach, but TL and CC highlight cases in which it can

excel. In the TL tasks, there always exists some feature corresponding to an action that

matches the optimal policy: the concept corresponding to the traffic light. That is, there

is always a concept present for the light being green, in which the desired action is to

go, or the light being red, in which the best action is to wait. An interesting side effect

is that related concepts such as “color:green” will also be given a slight bias in favor of

“go,” mirroring the associations of concepts that occurs in human learning (having seen

red stop signs our entire lives, we are more wary about proceeding whenever given a

red light). When a concept does exist that directly signals a good behavior, CAFE will

certainly detect and exploit it, as CMAC will do when a grounded state factor does the

same. Even when they are presented with anomalous objects, CAQL and CASARSA are

robust to both the threshold and the presence of cars, thereby effectively and correctly

ignoring them. It is the case that an observer can inspect what CARL methods learn to

see this process reflected: for the concept substates less relevant to the goal (e.g., any

related to cars), their learned weights near zero.

The CC tasks shed light on the difference between CAFE and CMAC in terms of
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Figure 5.11: Training results on CC-1 for 100 trials.
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Figure 5.12: Evaluation results in terms of the number of steps for 50 trials of CC-2,
with transfer from training on CC-1. I split the QL and SARSA into separate plots so the
differentiation among them is more readily apparent.
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Figure 5.13: Evaluation results in terms of cumulative reward for 50 trials of CC-2, with
transfer from training on CC-1. In comparison with non-transfer methods run on the
same trials, I found that CARL methods always receive a boost. However, observe that
CMACQL exhibits negative transfer. In the graph, I include CMACQL∗ as the version of
it without transfer. CMACQL∗ learns from scratch, and because it significantly exceeds
the performance of CMACQL trained on CC-1, one can clearly see the impact of negative
transfer. This pattern was not observed with CMACSARSA, indicating that the transfer
bias may more greatly affect an off-policy approach.
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transfer. Significantly, in these tasks there is no single feature (as in TL) that guides

good behavior. That is, a CC state possesses no one object or feature that acts like the

traffic light’s color, as an indicator of the optimal action. Agents must instead rely on

the linear combinations of many weighted features to find the appropriate action-value

functions. Thus, I view CC as more realistic of the challenges an agent might face in RL

and learning transfer.

Upon inspection, concepts related to the color of the block are clearly the strongest

contenders to be indicative of behavior. Indeed, looking at the learned weights reveals

that color-related concepts bias an agent to prefer navigating in the direction of the goal

closet. However, in any given state, these concepts alone are insufficient to guide an agent

because, alone, they do not take into account the position of walls or direction of the

agent. Thus, the CC domain shows how concept-aware algorithms must in essence learn

desirable actions from a conjunction of concepts, demonstrating that they can be used

successfully in linear function approximation to produce a correct and optimal policy.

For CMAC, the additional object (the second block) adds cells within their tilings

that have no knowledge transferred in, requiring them to learn that region of feature space.

Similarly, CAFE forms new concepts to accommodate the presence of an additional block.

The difference between the two featurization techniques, then, is how they cope with the

burden of the anomaly’s presence. In using only features derived from grounded state

factors, the “unknown” regions of CMAC tiles share no structural similarity to the other

features with which they coincide (as concepts do for CAFE).

For example, consider a CC-1 state in which the agent is just south of a red block

in the center cell: the best action (recommended by learned weights) would be to push
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the block north. However, now suppose the agent is later transferred to a CC-2 task, and

encounters nearly the same setup, now with a yellow block just north of the red one. This

yellow block occupies the doorway to the red closet, thereby preventing a push action

from moving the red block. Even though the set of old tilings (from which the weights

are transferred) is a subset of the new scenario’s tilings, the knowledge they transfer over

will negatively impact performance, biasing the CMAC agent into believing a useless

action (going north) is best. This property is in direct contrast with CAFE, which grace-

fully accepts the addition of another block’s new concepts in terms of those structurally

and abstractly similar (its super-concepts). Using the previous example, the presence of

the yellow block would be anomalous at the ground level, but through the FCA process,

would also give rise to an abstract super-concept of a block (of any color or shape) being

in the doorway to the red closet. CAFE would also produce an abstract concept of a block

(again, of any type) being in the center cell: together, these abstract concepts help the

agent circumvent the pitfall of useless behavior that would ensnare a CMAC agent. All

together, this crucial difference in how feature-level knowledge is represented is substan-

tiated practically by the results, showing the benefit of concept formation for transfer and

anomaly reasoning.

5.4 Conclusion

In this Chapter I introduce a novel featurization technique, concept-aware feature extrac-

tion, that relies on the theory of formal concept analysis to assemble a hierarchy of feature

clusters (formal concepts) that describe states of the world. I apply this technique to con-
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textual bandits and reinforcement learning problems to show how it can reliably transfer

knowledge abstractly to new, anomalous objects and situations.

For contextual bandits with concepts, I examine how the principles of anomaly

reasoning can extend beyond classification to handle decision making under a variety of

settings. With the Synthetic domain, which is comprised only of side information (where

transfer is not needed), my CBC algorithm performs adequately, but not as well as the

most straightforward approach. Upon introducing arm-specific features with the Mush-

room domain (in which novel arms are anomalous objects, in this case mushrooms), I

observe that concepts help to mitigate the negative effect of exploring new mushroom

by interpreting them in terms of learned concepts. For the NetHack Monster domain,

the agent is presented with a problem involving both side information and arm-specific

features, where the agent must align its own label with a set of possible options (mon-

sters). In this setting, one may observe the benefits of CBC most directly, such that a

CBC algorithm spends an initial period of costly learning to eventually acquire a kernel

of knowledge that results in policy that better minimizes long-term regret. The application

of CAFE to CB problems exemplifies the type of anomaly interpretation and adaptation

presented in the previous chapter.

For concept-aware reinforcement learning, I consider CAFE in combination with

linear VFA in a transfer setting, where agents are trained on one task and deployed on

another, more complex task. CARL algorithms operate by temporal difference, assign-

ing weight to concept features based on how they influence the expected reward in future

states. For the Traffic Light domain, I present a small MDP that can be solved easily by

standard methods, while offering a pared-down challenge to examine how CARL algo-
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rithms can disentangle concepts. Transfer to a harder TL task revealed how CAFE grants

a transfer boost in terms of jumpstart and better asymptotic performance. I also exam-

ine CARL algorithms on the more complex Cleanup domain, the Cardinal Closets task

simulating a robot that must move blocks of various shapes and sizes into the appropriate

place. With CC, both learning and transfer are more reflective of real-world domains;

as with TL and the results in CBC, one can see that the use of abstract concept features

boosts the algorithms’ ability to handle unfamiliar circumstances.

In the course of my experimental analysis of CAFE, I also examine its use in au-

tomatic feature clustering, its extensibility, and its facility for producing explainable and

interpretable generalizations. Thus, overall I demonstrate how state abstraction, specifi-

cally by looking at how to form concepts from the environment, help us better generalize

in terms of identifying, interpreting, and adapting to anomalies. In the subsequent chap-

ters, I shift focus to more complex decision making that applies abstraction not only over

states but actions as well, and I further consider how agents should generalize to new and

uncertain scenarios in terms of abstract patterns of behavior.
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Chapter 6: Hierarchical Reinforcement Learning and Planning

Just as we create concepts from our observations of the world, we similarly form habits

from the natural repetition of useful behavioral patterns. Adaptability in terms of concepts

requires anomaly reasoning; for habits, being an adaptable agent means generalizing these

behaviors to new tasks and environments.

Consider an adaptable robotic agent that faces typical kitchen preparation tasks.

Suppose the robot has prepared some basic recipes in the past, and we now want it to do

something new: prepare an omelet. With concept formation, we might expect it to have

learned concepts related to utensils, containers, and ingredients—the things that constitute

its environment. Given a new kind of whisk and bowl, despite never having seen any of

these particular designs, we would hope that it could interpret and handle them correctly.

However, in giving this kitchen robot a new recipe (to make an omelet), we instead

tax its ability to adapt to new goals and generalize its previous behavior. The recipe may

call for eggs to be beaten, specifying this step only with this high-level direction. What

habits might the robot have acquired to help it adapt? If the robot has already prepared

cakes, for example, we might expect it to have some familiarity with beating eggs. Ideally,

it would know how to manipulate each new egg without dropping them, how to collect

and use new tools (like the whisk and bowl), and how the eggs would appear when beaten

138



successfully.

Clearly this egg-beating subproblem of omelet preparation is a whole task unto it-

self, separate from the final goal of any one recipe. If the robot has already learned how

to beat eggs in general, as a habit, by reusing this knowledge it may greatly simplify the

overall challenge of adapting to the new recipe. In fact, it could treat each step of a recipe

as a separate subproblem worthy of learning as a habit, explicitly representing them as

skills that may be recalled. Then, the solution to any new recipe is a combination of

habits over which it may reason as individual actions, learning new ones as needed. The

difference is that, framing habits as high-level actions, they necessarily play out over a

longer period of time, at a more abstract level. The mathematical theories and mecha-

nisms needed for this type of temporally abstract decision making are what I introduce in

this chapter.

6.1 Abstraction of Actions Over Time

In shifting the focus from concepts to habits, I propose an equally critical question for

intelligent agents facing uncertainty: how should agents represent and reason about their

behavior over time? Ideally, agents should plan how to reach their goal by learning and

predicting the causal effects of their actions, as well as extrinsic changes in the environ-

ment, all while balancing requirements or constraints along the way. From this wide pool

of concerns, the topic of reasoning over groups of actions (such as in a sequence or pat-

tern) comprises a single but substantial issue. This is the problem of habit formation, or

more aligned with terminology in literature, subtask learning and skill acquisition [81,82].
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In this chapter I introduce the common solution: coalescing several discrete, single time-

step actions into an aggregate abstract action that plays out over variable or multiple

time-steps to achieve a deliberate and specific subgoal.

A Motivating Example

Suppose there is an intelligent agent tasked with piloting a taxi to collect and ferry pas-

sengers to their desired destinations. This overall task can be made arbitrarily complex,

with any number of passengers and possible destinations, varying distances therein, and

some cost on taking actions. The general form of a solution would be a route minimizing

the distance (and thus time-steps) needed to reach the goal state, in which all passengers

are where they wish to be.

In human decision making, our ability to reason abstractly over multiple timescales

and objectives can been readily observed in communication with such an agent. What

if, as a human observer, I wish to tell the taxi agent a solution as an action sequence,

specifying each step, as opposed to explaining it in a natural language? With access to

only primitive actions like moving one step in cardinal directions, the former (“go north,

go north, go west, pick up the passenger, . . . ”) quickly becomes tedious, verbose, and

also over-fit to the most fine-grained particulars of the given task. In the latter case, I

would be more comfortable using high-level directions (“go to the closest passenger, then

drop them off, picking up any others along the way”). This declarative-imperative split

underlies the idea of abstracting actions over time: as designers we care about stating

what to do, not necessarily how to do it, and presume the agent will ideally find the best
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way to achieve it.

Suppose we had an abstract action for moving and picking up passengers, and an-

other for moving and dropping them off. Combined, reasoning over these would simplify

plans by expressing behavior in a more general and natural manner. We would not need

to care about the particulars of each navigational step, as long as the taxi gets where it’s

going efficiently, vastly reducing the raw number of states and actions that need to be

considered to create viable plans. But how can our taxi agent learn to recognize useful

patterns for abstract actions, and moreover plan over them? The answer is to reason with

a hierarchy of abstract actions and related subgoals, applying a standard process of human

decision making: when faced with a complex problem, break it down into smaller ones.

6.1.1 The Hierarchical Approach

The principle of divide-and-conquer rests at the heart of hierarchical decision making:

the agent subdivides the task at hand into constituent parts, each a more focused and sim-

pler subtask to solve, recursively repeating this procedure until attaining the most atomic

decision problems: primitive single-step actions. Assembling a solution to the overall

task begins by composing these atoms into low-level subtask solutions, composing these

into ever higher-level subtask solutions, reusing any previously-solved subtasks without

needing to recompute them. Crucially, a subtask defines a pattern that encapsulates mul-

tiple actions into a single component over which an agent may reason discretely. A given

subtask, then, expresses a program of behavior that occurs over an arbitrary number of

time-steps, not just one as in all previous discussions of decision making.
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When planning over subtasks, an agent can reason abstractly: it limits the set of ac-

tions available, focuses on the most pertinent objects, and ignores aspects of the environ-

ment irrelevant to the task at hand. As the vehicle that ties abstract actions with subgoals,

subtasks also facilitate the reuse of solutions: when encountering the same subtask again,

such as a situation that requires reaching a subgoal visited once before, previously used

plans and policies may be reapplied, thereby making complex problems more tractable.

More subtly, a subtask is itself both a decision problem and, once solved, serves as a

bundle of actions forming a self-contained policy or program that can be planned over

and executed discretely. Ultimately, a hierarchical agent seeks a sequence of subtasks

specifying optimal behavior, such as by maximizing future rewards or by taking the agent

from its current location to a state satisfying all of its goals.

6.1.2 Top-down vs. Bottom-up

Over the past two decades of research in hierarchical methods applied to MDPs, the cen-

tral concern under examination has been the representation of subtasks as temporally

abstract actions. Across literature, two paradigms of hierarchical decision making domi-

nate: the bottom-up learning and the top-down planning of subtasks.

The bottom-up approach most commonly arises in bootstrapped, temporal differ-

ence settings such as the options framework [150], MAXQ [34], and related techniques

that operate using task hierarchies [18]. In this chapter, I explore these methods and

discuss my contribution to the development of two ones: the expected-length model of

options (planning via model-based RL), and portable option discovery (transfer learning
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for RL).

The top-down view, in contrast, has greater roots in classical planning techniques,

such as STRIPS [40] and its extension to abstract hierarchies [135], with a significant

body of work originating from hierarchical task networks [39], including HPN task and

motion planning [71] and goal task networks (GTNs) [6]. In the next chapter I delve more

deeply into the background on top-down approaches, and I discuss my contribution to one

in particular at length: planning with hierarchies of abstract Markov decision processes.

Completing this discussion of hierarchical methods, the subsequent chapter articulates

a novel, combined approach for bottom-up learning of structures that enable top-down

planning, synthesizing and leveraging the benefits of both.

Altogether, I recapitulate hierarchical decision making as aiming (1) to abstract

patterns of actions into subtasks that, when executed, occur over multiple time-steps; (2)

to decompose hard tasks into subtasks; (3) to transfer, or reuse, solutions for subtasks;

and, (4) to synthesize a combined bottom-up learning and top-down planning perspective.

6.2 The Options Framework

Perhaps forming the most foundational of hierarchical decision-making techniques, the

options framework [12,96,150] represents abstract actions as options available to an agent

under certain conditions. As a mathematical object, an option functions exactly like an

action that takes multiple steps to execute. It differs from simple lists of actions, or macro-

actions, in that it is reactive. More precisely, the option specifies (1) when it may begin,

(2) when it is complete, (3) and how to behave under varying circumstances.
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Definition 6.1 (Option). An option ω is a 3-tuple 〈Iω, βω, πω〉 [150]:

1. Iω ⊆ S, a set of valid initiating states;

2. βω : S → [0, 1], a termination probability distribution;

3. πω : S ×A → [0, 1], a local probabilistic policy.

The initiation set Iω are the states in which the option may begin to be executed;

equivalently, an option may instead define a predicate Iω : S → {0, 1} that denotes if

the state satisfies some arbitrary initiation condition, effectively assessing membership in

Iω. When the agent initiates ω in state st, it successively follows πω up to some state st+k

when the termination condition is met (k ∼ βω). In other words, each state s the agent

enters when executing ω has a βω(s) probability of terminating the execution.

With these components, an option captures the notion of a subtask, expressing the

idea of a single high-level action that achieves a particular subgoals in the MDP in which

it operates. Assuming valid conditions (Iω), executing the option equivalently executes a

program (πω) of lower-level actions over variable time-steps that eventually attain some

subgoal condition (βω).

6.2.1 Options & SMDPs

Given an option set Ω , extending an agent’s possible actions (i.e., A ← A ∪ Ω) results

in a semi-Markov decision process (SMDP) [150]. Under this formalism, the Markovian

assumption is relaxed, to account for the variable time-steps an ω might take. In general,

I consider an SMDP as defining a flat hierarchy, where its options have equal precedence

as subtasks, referencing only primitive actions rather than other subtasks. Benefits of
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planning over options in an SMDP include guiding exploration to useful subgoals and

allowing temporal difference updates to a terminal state of ω to propagate across all value

function approximations for connected states. Planning with options remains a popular

topic in literature planning [101, 102, 139]. A drawback of this scheme is that an agent

may invest more effort in planning with or learning options than would be needed in

solving the base domain without them [68]. Thus, I will explore techniques that exploit

their beneficial aspects while mitigated potential downsides.

6.2.2 The Multi-Time Model

RL on an SMDP usually requires learning a model, a representation of T and R to pre-

dict the causal effect of actions and options on future states and reward, with techniques

called model-based RL. By collecting sample experiences to improve its approximation

of environmental dynamics, a model-based RL agent then simulates future actions to find

a way to its goal. Thus, model-based agents effectively learn how to plan. With options,

this kind of agent needs a particular type of model that accounts for the semi-Markovian

nature of variable time-steps updates and probabilistic termination. The solution is a mod-

ified Bellman equation, called the multi-time model (MTM), that estimates a transition

and reward corresponding to the effects of each ω ∈ Ω [150].
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Definition 6.2 (Multi-Time Model). For an MDP that includes options (i.e., an
SMDP), the multi-time model [126, 127] comprises:

Tγ(s
′ | s, ω) :=

∞∑
k=0

γk Pr(sk = s′, βω(sk) | s, ω), (6.1)

Rγ(s, ω) := E
k∼βω ,s1...k

[
r1 + γr2 . . .+ γk−1rk

∣∣∣ s, ω] , (6.2)

assuming γ given. Note the dependence of each equation on random variable k,
expressing the time-step of stochastic termination.

For option models, SMDP or “intra-option” model-learning algorithms allow in-

cremental Bellman-like updates to attain Tγ and Rγ , which can be computed while exe-

cuting ω (or from replaying a sampled experience of ω). Overall, learning options is an

off-policy, bottom-up process [150].

6.3 Key Questions for Learning Options

Effective options facilitate planning to reach time-distant goals while directing explo-

ration towards useful regions of state space. However, three key questions face us when

trying to generalize options as subtasks:

1. How can we learn option models more efficiently, abstractly?

2. How can we transfer learned options?

3. How can we discover options in the first place?
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6.3.1 Learning Option Models

An option depends upon a πω that encompasses the entire state space. In attempting to

learn a model for producing such a policy, the problem is compounded. In particular, the

transition probability distribution may be complex to approximate for MDPs of any non-

trivial size, while the reward function might take any arbitrary shape. Crucially, Equa-

tion 6.1 depends on a joint probability distribution over all possible values of k, which

may become arbitrarily hard or inefficient to acquire or compute. This property means,

for model-based RL agents, intra-option learning mixes the stochasticity inherent to the

environment with stochasticity in both the option’s policy and termination condition.

Existing work typically addresses these challenges in the algorithms themselves,

such as the option-learning algorithm Q(β) that enables faster convergence by learning

β in an off-policy, where an agent is capable of modifying the termination condition

of the option [59]. Similarly, interrupting options [100, 150] modify algorithms to let

agents preempt option execution, re-planning to speed up learning. Instead of solely

proposing a new algorithm, compositional option models [139] generalize the Bellman

operator to work on recursive nesting of options, preserving the ability to incrementally

learn models, and outlining a novel algorithm, option-option model iteration, to compute

it. In Section 6.4, I follow this latter strategy of introducing a new theoretical definition of

the option model itself. This formulation differs from these others by making option more

sample-efficient to learn, retaining near-optimality while being learnable by any existing

model-based approach.
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6.3.2 Transferring Learned Options

Once an agent learn options, to make them more general subtasks, it would ideally be able

to reuse them in MDPs of similar or variant high-level tasks. However, options are specific

to the MDP upon which they are learned or originally defined. Transferring options to

variant MDPs pulled from the same task universe may be impossible or infeasible, since

they depend directly on states of their original MDP.

6.3.2.1 Transfer Options

Transfer Options (TOPs) [96] address this challenge. TOPs take options learned (or

expert-defined) on one state space and transfer them to another. This process consid-

ers source domains (MDPs) and a target domain (MDP from the same universe) with

different states and dynamics. TOPs collect contiguous state-action pairs from source

policies, and re-apply their entirety to a new domain, given a mapping of source states

to target states. Thus, TOPs make the critical assumption that an expert can specify a

mapping of states from the source to the target. Together with initiation and termination

conditions (the Iω and βω are additional user input), creating a TOP ω takes the externally

defined mapping and translates all state-action pairings (of πomega) into the new do-

main; anything extraneous to the target domain from the source is simply ignored, while

any state-actions not covered in the target must be learned. Hence, TOPs straightfor-

wardly generalize knowledge with minimal exposure to negative transfer. What remains

to be made are an intelligent creation of mappings, and the selection of partial policies to

transfer.
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6.3.3 Discovering Options

Option discovery covers a broad range of possible approaches. I focus here on learning

pieces of policies that are composable into complete options.

6.3.3.1 PolicyBlocks

PolicyBlocks option discovery [121] extracts the components needed for options. As-

suming source and target domains share a similar state space, PolicyBlocks identifies

partial policies by creating a merge across those domains. Merging takes the union of

state-action pairs in source policies, Sm, joining them into a partial policy preserving

consensus action across states while collapsing the mapping for unknown states:

πm(s) =


∅ if s ∈ S − Sm (no consensus),

a otherwise (consensus action).

(6.3)

Note that PolicyBlocks considers deterministic policies, functions of states to actions

rather than state-action pairs to a probability. When solutions overlap over source MDPs,

PolicyBlocks creates option candidates created by merging the various πm, scoring them

based on how many consensus states they contain and how many source policies concur

with the non-zero state-action pairs. Beginning with the highest-scoring candidate, Poli-

cyBlocks reifies it as an option while subtracting its consensus state-actions from all other

candidates. However the drawback remains that source and target must share the initial

state space; this problem inspires our approach in Section 6.5.
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6.3.3.2 Related Methods

Other option discovery methods include a focus on identifying critical paths or landmark

states [12, 24, 98, 104, 110, 145], clustering and graph partitioning [103, 141, 143], and

more general “skill” discovery by chaining actions [81,142]. Additionally option discov-

ery in a transfer context has received some theoretical treatments in literature: analyzing

sample complexity and outlining a “probably approximately correct” (PAC-SMDP) al-

gorithm [23]; and reframing MDPs in terms of extrinsic state features versus intrinsic

agent-spaces [80, 85]; and finding new error bounds by generalization of options as tasks

with transition-based discounting [168].

6.3.4 Towards More General Options

Bringing these questions together, I offer two answers; (1) learning sample efficient mod-

els by abstracting over the expected time-length of options, (2) discovering abstract op-

tions that transfer to novel tasks.

6.4 The Expected-Length Model of Options

We introduce our novel contribution of the Expected-Length Model (ELM) for options.

This section is based on joint work with fellow doctoral student David Abel, and co-

authors Michael Littman and Marie desJardins [4]. My main contributions to this work

are in the creation and design of ELM, the discussion of its differences with respect to the

multi-time model, and the experimental results and analysis; the theoretical results related

to ELM are simply summarized in this section, as David was primarily their author.
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We contrast the expected-length model of options directly with the multi-time model.

Consider Definition 6.2, and note that it operates over a potentially unbounded number of

time-steps (k). Likewise, there is a related number of parameters with which to model the

distribution. ELM differs here, by applying the principle of abstraction over the probabil-

ity factored by time-steps. Specifically, ELM uses a point estimate instead of the full joint

distribution. ELM takes the maximum likelihood estimation (MLE) of an option’s time-

steps; an agent using ELM options will assume this point estimate captures the underlying

distribution to a sufficient degree.

To restate, ELM biases how option models are approximated. The resulting value

functions learned over such options represent value with respect to expected time. In this

work we will demonstrate that ELM leads to an empirical error without negatively effect-

ing the rolled-out policies. Moreover, our theoretical work builds toward a more concrete

understanding of tuning the degree of abstraction such that the overall model error is arbi-

trarily close to the MTM model. In other words, ELM generalizes over subtask transition

details, but still provides optimal or near-optimal policies, even when composing ELM

options into task hierarchies, layering subtasks of subtasks. What is saved are excessive

requirements for samples and parameters (as with MTM).

Our core insight with ELM is that we need not model the full joint distribution of

an option’s possible outcomes, as MTM does. Instead, we simply estimate the expected

length of an option rollout. More precisely, ELM explicitly models the transition and

reward dynamics using the expected number of time-steps taken by an option, µk, which

can be learned incrementally and stored trivially.
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Definition 6.3 (Expected-Length Model). For a given option ω, the expected-
length model of options assumes the expected number of time-steps an option takes,
µk, approximates the underlying probability distribution:

Tµk(s′ | s, ω) := γµk Pr(s′ | s, ω), (6.4)
Rµk(s, ω, s′) := γµkE [r1 + r2 . . .+ rk | s, ω] , (6.5)

where Pr(s′ | s, ω) denotes the probability of terminating in s′, given that the
option was executed in s. Note that ELM no longer depends on a random variable,
as MTM does (cf. Definition 6.2).

In contrast, the Tγ and Rγ of an MTM require computing and storing a joint probability

of successor states, s′, and k, the random variable whose observed event is dependent

on the option’s termination probability (βω). ELM inherently achieves a kind of true

temporal abstraction: by only considering the expected number of time-steps an option

may take, ELM ignores the fine-grained details and idiosyncrasies that manifest in the

option’s underlying dynamics. Thus, ELM captures a core notion of temporally abstract

human decision making: in breaking down a hard task into simpler subtasks, at any given

level we ball-park how long it may take to finish that subtask, and only when executing

that subtask do we care about the particulars.

In the following subsections we articulate how ELM’s unique form of abstraction is

acceptable and desirable, leading to simpler models that still find (near-)optimal policies

and improving performance in each experiment considered, all in fewer sampled expe-

riences. Our methodology is tested in a variety of experiments, examining increasingly

complex domains, and the effect of ELM in both flat and multi-level task hierarchies.
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(a) A tiny, exemplary MDP. States are nodes,
arcs are transitions labeled with their probabil-
ities, using a parameterized slip probability δ,
and non-zero reward is denoted in green.
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(b) Model differences for δ = 0.4.

Figure 6.1: An example of the differences between MTM and ELM for an option. In
Figure 6.1a, consider the example six-state MDP. Further consider the option initiating in
s1 (blue) and terminating in s6 (orange). Note that this option has two avenues, a guaran-
teed two-step path above and an arbitrarily long path below. This decision corresponds to
the transition T (s2 | s1, ·) = T (s5 | s1, ·) = 0.5. Here is where ELM and MTM differ.
Figure 6.1b shows the probabilities ELM and MTM place on the possible number of steps
for the option, when δ = 0.4. ELM represents only a point estimate: the expected num-
ber of time-steps taken by the option (µk = 5). MTM, however, captures the full joint
distribution for the transition, over all possible k time-steps taken by the option.

6.4.1 Intuition for ELM vs. MTM

By restricting our problem set to modified stochastic shortest path problems (SSPs), al-

lowing goal and failure states, we show computing with ELM produces value functions

that are within a bounded-error neighborhood of the optimal MTM value functions (tune-

able by a sampling hyperparameter).

We present the six-state MDP in Figure 6.1a as a construction that accentuates the

differences between ELM and MTM for the same option. Suppose an option goes from

the blue node to the orange node, initiating in s1 and terminating in s6. For the sake of

simplicity, let the probability of termination be β(si) = 0 for all si 6= s6. We overlay the

option’s probabilistic policy onto the MDP, such that the arcs are assigned the direction
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Figure 6.2: The difference in resulting value functions for options when varying the slip
probability parameter δ ∈ [0.01 : 1.0] for the same option using MTM and ELM for
the MDP defined in Figure 6.1. The 95% confidence intervals are visualized on the plot
above, but are too negligible to be seen.

and probability that the option would follow. For example, the option policy from s1 ends

up in s2 with probability 1
2

and in s5 with probability 1
2
.

The example includes a “slip” probability, denoted by the parameter δ, which we

leverage to make the example arbitrarily more complex in terms of its stochastic behavior.

This property can be best seen by the option’s policy from s2. With probability 1 − δ,

the action will self-transition and the agent executing the option remains in s2. With

probability δ, the agent progresses into s3, and the process repeats for s3 and s4. The

alternate avenue offers a more deterministic two-step path from s1 to s5 to the terminal

s6.

Now consider the estimation of the transition into s6 under MTM: Tγ(s6 | s1, ω).

To construct a proper estimate, MTM must estimate the probability of termination in

each state over all possible time-steps to determine Pr(s(1) = s6 | s1, ω),Pr(s(2) =

s6 | s1, ω), . . .. This computation involves estimation over arbitrarily many time-steps;

in some cases, like this one, we might find a closed form based on convergence of the
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geometric series, but agents cannot always intuit this fact from limited data. In contrast,

ELM models this distribution according to µk, the average number of time-steps.

Given the true MDP transition function T , we run n rollouts of the option to ter-

mination. Supposing each rollout reports (s, ω, r, s′, k), with r the cumulative reward

received and k the number of time-steps taken, we can trivially estimate µk with the max-

imum likelihood estimator (MLE) µ̂k = 1
n

∑n
i=1 ki. We can also estimate Pr(s′ | s, ω),

the probability that ω terminates in s′, by modeling it as a categorical distribution with

` = |S| parameters. Then, we estimate each `i with an MLE.

To summarize: ELM estimates µk and Pr(s′ | s, ω), for each s′ of relevance, by

using an MLE based on data collected from rollouts of the option; MTM must estimate

the probability of terminating in each state, at each time-step. It is unclear how to capture

this infinite set of probabilities of value economically.

We visualize their differences in the quantity Pr(sk = s6 | s1, ω), for each k, in

Figure 6.1b. MTM (in orange) distributes the transition probability across many step

lengths k. Approximately half of the time, s6 is reached in two steps via s5; the rest of

the probability mass is spread across higher values, reflecting longer paths (via s2). ELM

(in blue) instead assumes the option takes µk = 5 steps. For both models, each non-zero

bar represents a parameter that needs to be estimated, giving a sense of the difficulty in

estimating each distribution. We also present the value difference under each model in

Figure 6.2, which decreases to around 0.15 as δ tends to 1 (with VMAX = 1.0). This

trend suggests that the higher the variance over expected number of time-steps, the more

the ELM deviates from MTM.

In sum, this example highlights the following intuition: we need not decompose
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future plans into the probabilities over all possible actions, over all possible time-steps;

such reasoning can actually defeat the purpose of temporal abstraction.

6.4.2 The Difference in Learning Models

The goal of ELM is to simplify MTM to be able to estimate and compute the model of

a given option more efficiently. MTM relies on modeling the outcome of a given option

over all possible time-steps, which is impractical to compute even in small domains.

Estimation. Learning an option’s MTM involves estimating infinitely many probability

distributions. A reasonable approximation might involve limiting the sum to the first

λ = (1−γ)−1 steps as an artificial horizon, thereby yielding λ|S|2 parameters to estimate.

In contrast, ELM requires learning the parameters of a categorical distribution indicating

the probability of terminating in each state. With one multinomial for each state, any

learning algorithm must estimate 2|S|2 total parameters. Depending on the stochasticity

inherent in the environment, option policy, and option-termination condition, estimating

this smaller number of parameters is likely to be considerably easier (λ� 2).

Computation. The MTM requires performing the equivalent computation of a Bellman

backup until the option is guaranteed to have terminated just to compute the option’s re-

ward function (Equation 6.2). Due to the decreasing relevance of future time-steps from

γ, one might again only compute out to λ time-steps to determine Rγ and Tγ . Thus, com-

puting Rγ is roughly as hard as computing the value function of the option’s policy (at

least out to λ time-steps), requiring computational hardness similar to that of an algorithm

156



like Value Iteration, which is known to be O(|S|2|A|) per iteration, with a rough conver-

gence rate of Õ(λ|T |) for |T | as a measure of the complexity of the true transition func-

tion [94, 160]. Conversely, ELM is well suited to construction via Monte Carlo methods.

Consider a single simulated experience e = (s, ω, r, s′, t), of the initial state, the option,

termination state, cumulative reward, and time taken. This experience contains each data

point needed to compute the components of option ω’s model (Equations 6.4 and 6.5), all

sampled directly from the appropriate distributions. We highlight this property of ELM

as desirable when the acquisition of samples is costly, as in robotics domains. With ELM,

option models can be learned from these simulations, E , with each e ∈ E needing only

labels of where the option began, where it ended, how much reward it received, and how

long it took. It is therefore sufficient to run a number of rollouts proportional to the de-

sired accuracy when using ELM. Relying on such methods for computing MTM again

requires estimating an arbitrarily large number of parameters, which is clearly untenable.

6.4.3 Theoretical Analysis

In addition to the experiments we present in this section, we conduct a theoretical anal-

ysis of ELM, with our main theorem bounding the value difference between ELM and

MTM for Stochastic Shortest Paths (SSPs) with high probability under certain reasonable

conditions. The theorems and related lemmas are proved in our conference paper to be

published later this year [4]; David Abel is responsible for the majority of our progress

on these theoretical results, and thus are described here only in summary.

We find that the difference between MTM (Tγ and Rγ) and ELM (Tµk and Rγµk)
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may be bounded such that the value function learned using ELM results in near-optimal

policies. Consider any option ω ∈ Ω , variance precision parameters τ > 1 and δ =

σ2
k,ω

τ2
, and all state pairs (s,′ s) ∈ S × S . Assuming options have non-zero probability of

termination in every state, we determine with probability 1− δ:

|Tγ(s′ | s, ω)− Tµk(s′ | s, ω)| ≤ γµk,ω−τ (2τ + 1)e−βmin . (6.6)

Further assuming we restrict the case to only SSPs, we obtain it is always true that

|Rγ(s, ω) − Rµk(s, ω)| = |Tγ(sg | s, ω) − Tµk(sg | s, ω)|. And, thus, with probability

1− δ:

|Rγ(s, ω)−Rµk(s, ω)| ≤ γµk,ω−τ (2τ + 1)eβmin . (6.7)

Moreover, we establish any policy over options πω with probability 1− δ:

|V πω
γ (s)− V πω

µk
(s)| ≤

ε(1− γµk) + γµk ε
2
RMAX

(1− γµk)(1− γµk + ε
2
γµk)

, (6.8)

where ε = γµk,ω−τ (2τ + 1)e−βmin . As a consequence of these theoretical conclusions,

we ascertain a loose though non-vacuous bound between MTM and ELM in the most

general case; our subsequent experiments demonstrate, in practice, we observe much

tighter bounds such that ELM efficiently and successfully approximates the multi-time

option model.
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6.4.4 ELM Experiments

We examine the utility of ELM as a means of learning option models under a variety

of conditions, with tasks of increasing size and complexity. The main hypothesis we

investigate is how ELM compares to MTM for learning and exploiting option models in

SSPs.

6.4.4.1 Methodology

We frame each experiment as a hierarchical model-based reinforcement-learning prob-

lem. In this paradigm, an agent reasons with a collection of primitive actions and options,

or a hierarchy of options. All models are initially unknown; or equivalently, the agent

is only given an initiation predicate and termination probability, but no policy, 〈I, β, ·〉.

Thus, the agent must estimate each option model through experience—we use R-MAX

to guide learning [22]. R-MAX counts transition visitations and total rewards as they are

observed. Crucially, unknown transitions are treated as providing maximum reward until

they become “known” by being visited beyond some m threshold. It is here that MTM

and ELM differ in application: a transition under MTM requires adding and updating

as many parameters as needed across all k possible time steps, while a transition under

ELM needs only update its running average, µk. Once a transition is known, its respec-

tive values in T and R are computed by R-MAX to be the observed totals divided by the

state–action count. An option policy is then generated by running a planning algorithm

with the R-MAX-approximated model; we use value iteration.

Our experiments each consists of 30 independent trials. Every trial, we sample a

159



new MDP from the given domain (all MDPs in the same domain have identical transitions,

states, and actions). Each MDP uses a goal-based reward function, providing the greatest

reward at goal states, adhering to the properties of SSPs, and yielding the most negative

reward at any failure states. A trial consists of 300 episodes, terminating at either a goal

state or failure state or upon reaching a maximum number of steps. The task hierarchies

are expert-defined and, for cited domains, are based on options or MAXQ task hierarchies

in existing literature. We set m = 5 for the confidence parameter in R-MAX. Across all

MDPs, γ = 0.99, and all transitions are stochastic with probability 4/5 of an action

“succeeding,” otherwise transitioning with probability 1/5 to a different adjacent state.

6.4.4.2 Domains

We experiment with the following domains: Four Rooms, Bridge Room, Taxi, and Play-

room.

The Four Rooms domain [150] is a well-known gridworld with bottleneck “hall-

way” states between four larger, walled-off rooms, and a goal state at some random posi-

tion. An agent may move north, south, east, or west, and possesses options for moving to

the hallways, which may be initiated when the hallway is adjacent to the agent’s current

room.

The Bridge Room domain is a variant gridworld where a large central room con-

tains a bridge of traversable cells that are flanked by “pits” (failure states). The agent

starts on one side of the bridge, and the goal state is opposite, with both just outside of

the interior room. Two corridors on either side of the central room offer safe but longer
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(a) Example Taxi state. (b) PALM-ET, the classic expert Taxi hierarchy.

Figure 6.3: An example state and task hierarchy for the Taxi domain [34]. In 6.3a, objects
are the taxi (gray), walls, depots, and passenger (smaller red circle, at the blue depot).
In 6.3b, edge labels specify parameters passed from parent to child subtask (thus, for the
state on the left, the hierarchy would specify four NAVIGATE options, one for each depot).

pathways. Differing from the Four Rooms domain, the agent is only given options for

moving to the doorways between rooms. The bridge is short but crossing it is dangerous

due to stochasticity. The ideal policy, then, is to use either corridor option around the

bridge room.

The Taxi domain [34] is a classic hierarchical learning problem where the agent,

a taxi, must collect passengers and ferry them to different destinations. We show an

example state in 6.3a. Here, options are based on the standard MAXQ task hierarchy,

visualized in Figure 6.3b: four NAVIGATE options (one each for moving between each

destination depot, with all primitive movement actions); for each passenger, there’s a

GET option that can “pickup” (a primitive action) and a PUT option to “putdown” the

passenger, with both GET and PUT able to use all NAVIGATE options; and, a ROOT option

that can GET and PUT any passengers.

The discrete Playroom domain [82,144] defines a complex, interlaced hierarchical

planning problem. The agent has three effectors (an eye, a hand, and a marker) that must
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be moved separately. The environment contains music and lights (both off) and several

objects that can be interacted with if both the hand and eye are over them. There is a

switch that turns the lights on or off, a green button that turns music on, a red button that

turns music off, a ball that can be thrown towards the marker, a bell that rings when hit

by the ball, and a monkey that cries only when the lights are off, the music is on, and the

bell rings; the goal is to make the monkey cry. Playroom offers a tough challenge in that

all three effectors must be coordinated and some work must be undone: buttons can only

be pressed when the light is on, so any solution requires first turning the lights on, turning

the music on, turning the lights back off, and throwing the ball at the bell. Following [82],

our agent plans over the interact primitive action and options for moving each effector to

each object.

6.4.4.3 Results

We conduct experiments focusing on the speed and quality of learning ELM options mod-

els, in terms of discounted cumulative reward (performance) and time steps (sample com-

plexity), compared to MTM. Figures 6.4 and 6.6 present performance curves with 95%

confidence intervals for the domains that we discuss shortly in more detail. Overall, we

observe that ELM and MTM attain the same asymptotic performance across every ex-

ample, reflecting the fact that they both eventually converge to similar value policies for

each task. Further, the results suggest that ELM often requires fewer absolute samples to

achieve the same behavior.

In general, we find that, with all else being equal, ELM requires fewer samples
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to reach near-optimal behavior. This fact is reflected by the graph of ELM terminating

earlier than MTM when plotted over time steps in Figure 6.4a, given both are run for a

consistent number of episodes. ELM more efficiently achieves the same trend. This result

reveals how, under ELM, plans reaching the goal are formed earlier, how the agent more

quickly finds a good policy. Consider the difference of the value functions learned under

these models (Figure 6.5). The image displays the error that arises from the assumption

ELM makes when planning over options, relative to MTM, while reflecting some noise

due to stochasticity in the domain. However, upon inspection of this and all other trials,

the overall shape of the value function for ELM and MTM is approximately the same. For

example, in the trial from Figure 6.5, both V ∗µk(s) and V ∗γ (s) ramp up in value towards the

upper-right corner, from the three other corners. Most importantly, despite the difference

in the value functions, the policies generated from both are identical; both MTM and ELM

yield the optimal policy. The end result is that, while the option models learned under

MTM are correct and optimal, those learned under ELM are near-optimal but acquired

sooner, while still yielding the optimal policy.

We consider results on two variants of the Bridge Room domain, grids of size 9×9

and 11×11 (Figure 6.4b). The joints in the graphed curves reflect when option models

solidify (the majority of transitions in R-MAX become “known”) In the latter figure, as

with Four Rooms, we remark that ELM begins converging earlier consistently, reflecting

its ability to generalize more quickly about the expected length, and thus value, of the

available options. In the former, however, the results are not statistically significant, and

we see here a trade-off of ELM over MTM. For this smaller domain, the bridge is short

enough that ELM may randomly happen to cross it safely several times. If this event
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(a) Four Rooms. (b) Bridge Room.

Figure 6.4: Learning flat hierarchies of option models in relatively simple gridworlds. In
6.4a, ELM and MTM attain the optimal policy, with ELM dependably relying on fewer
samples to begin solidifying its models. In 6.4b,

occurs, the agent learns to expect higher reward from the bridge option, negatively im-

pacting ELM’s overall performance until it eventually learns the impact of stochastically

falling into a pit. Hence, the confidence interval of ELM on 9×9 in Figure 6.4b widens

as ELM is less consistent across trials; we designed this domain precisely to exhibit this

potential downside of ELM. Note that, while the ELM options here are not optimal and

are subject to greater variance, the resultant policy converged to by the planning algorithm

using these models is optimal.

For the Taxi domain, we consider the cumulative number of samples as task com-

plexity increases from one to three passengers. For each, we discern that both learn mod-

els in relatively few episodes. In the case of one and two passengers (Figures 6.6a and

6.6b), the results are closely aligned, and the benefit of ELM over MTM is significant but

minimal. For the largest task, three passengers (Figure 6.7), we observe similar results

but draw attention to the lower variance among trials.

Figure 6.8 presents results, again measuring cumulative steps taken (so lower on
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(a) Value under MTM, Vγ . (b) Value under ELM, Vµk . (c) The difference |Vµk − Vγ |.

Figure 6.5: Visualizations of learned value functions in a Four Rooms task under (a)
MTM, (b) ELM, and (c) their absolute difference. In this trial, the goal is in the upper-
right corner, and learning occurred over 300 episodes. In (a) and (b), each cell contains
the value of the state in which the agent occupies that position, from low (red/violet) to
high (yellow). In (c), each cell instead reports the error, |V ∗µk(s)−V ∗γ (s)|, visualized from
low (blue) to high (green).

the y-axis means faster learning) in the discrete Playroom domain. Here, the patterns

manifested in the other examples recur, though the two trends diverge later than in the

Taxi experiments. This behavior is due to the immense state–action space that must be

learned for the effector-moving options, such that, even as they are being learned, we see

ELM’s effect—favoring expected length leads to the generation of overall shorter plans.

6.4.5 ELM Discussion & Context

With ELM, we propose an option model that is simpler to acquire with limited or no

impact to performance, illuminating how it retains a reasonable approximation of MTM

while removing the overhead in its construction.

In related work, learning models for use in making long horizon predictions has

proven challenging. For instance, even ε-accurate one-step models are known to lead to an

exponential increase in the error of n-step predictions as a function of the horizon [22,76],
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(a) One passenger. (b) Two passengers.

Figure 6.6: ELM experiments learning options for Taxi task hierarchies.

Figure 6.7: Taxi, three passengers. Figure 6.8: Playroom.

though recent approaches show how to diminish this error through smoothness assump-

tions [11]. Composing an accurate one-step model into an n-step model is known to give

rise to predictions of states dissimilar to those seen during training of the model, leading

to poor generalization [152]. Recent work has proposed methods for learning options that

alter some aspect of the traditional formalism, either by treating option terminations as

off policy [59], regularizing for longer-duration options [100], or composing option mod-

els together to be jointly optimized while planning [139]. It remains an open question,

however, as to how to tractably obtain an option model.

In future work, we suspect that a nearby approximation of ELM can serve as a
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sufficient replacement for MTM in richer classes of MDPs. Second, we foresee a connec-

tion between ELM and the problem of option discovery–we speculate that finding options

with simple models may serve as a useful objective for learning. For instance, inherent

stochasticity leads to higher ELM error. Thus, finding options that minimize this source

of error may enable quick learning of options and their models. Finally, further analysis

may shed light on the bias-variance trade-off induced by the ELM.

6.5 Portable Option Discovery

In the majority of previously discussed work, options themselves originate with a hu-

man designer. In these cases, the structure of the initiation and termination condition are

pre-specified using expert knowledge. When options are discovered, such as with Policy-

Blocks, they lack the ability to generalize to new tasks. Moreover, the number of options

are also given beforehand, which can affect the overall performance and behavior an agent

may learn [12].

In this section, we seek to describe an algorithm capable of discovering options that

transfer among variant, related tasks. This goal poses a significant challenge as it requires

composing disparately learned options while also generalizing them. Here, we present an

approach that achieves just that, our research on Portable Option Discovery (POD). POD

leverages a novel mapping and heuristic search approach for abstracting options that can

be applied to existing algorithms to shore up where they are weak. For instance, POD can

make PolicyBlocks partial policies transferable, and POD provide a means of discovering

source policies that can transfer via TOPs. The content of this section is derived directly
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from joint work, presented by Topin et al. (2015) [159], and I acknowledge the significant

contributions of my colleagues and fellow students, Nicholay Topin, Nicholas Haltmeyer

and Shawn Squire, the prior work of UMBC students Tenji Tembo, Michael Bishoff, and

Rose Carignan [32], as well as the guidance of co-authors James MacGlashan and Marie

desJardins. I supervised the design of the algorithms for POD presented here, with my

primary contributions being in the writing, discussion of computational complexity, and

analysis of experimental results.

6.5.1 POD Approach

We present three core aspects for discovering and assembling options that are portable:

1. a state abstraction function built on consensus of relevant objects;

2. a scoring mechanism for partial policies;

3. and a guided search over possible abstract policy mappings.

Throughout our discussion of POD, we assume an OO-MDP formulation of tasks,

though the methodology could be generalized to any factored state space MDP. When we

discuss “policies,” we are referencing option policies specifically but omitting the word

“option” for brevity’s sake. Additionally we rely upon specialized terminology from the

existing literature [32, 121]:

• source policies, a set of policies from one or more example task MDPs;

• a merge, the collected state-action pairs shared between two partial policies;

• and option candidates, the set of possible policies resulting from a merge.
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From a high-level view, our option discovery focuses on converting from source

policies to partial policies, extracting commonalities, creating abstract intermediate rep-

resentations, and then grounding them to a novel task, yielding a set of specific options

that carry over previously-learned behaviors. More specifically, we obtain an abstracted

representation of subtasks, capturing knowledge of how an agent may act in a way con-

ducive to generalization. POD accomplishes this goal by building abstract policies in

option candidates suitable for grounding to novel tasks.

6.5.1.1 State Abstraction for Options

The first step is to apply state abstraction to map source policies into a common state

space. Formally, suppose we have access to tasks pulled from the same universe or do-

main D, with a set of source policies Π = {π}D. There also exists an implicit set of

all possible states that could be expressed, SD, such as the range of states the classes of

an OO-MDP could describe, and all primitive actions that are ever available, AD. Be-

cause each π may come from a different task MDP, each has its own Sπ ⊆ SD states

and Aπ ⊆ AD actions. To generalize them, we require a state abstraction function

φ : SD → S̃.

Many possible φ may exist; we induce our φ directly by exploiting the nature of

OO-MDPs. Recall that an OO-MDP possesses an object set O from which its S may

be derived, and the abstract state space S̃ would have its own set of abstract objects

Õ. In particular, we define the set of abstract objects Õ as a subset of the OO-MDP

objects present across source domains, Õ ⊆ Oπ ∀ π ∈ Π . When there are multiple
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objects of the same type in Oπ, each must be associated with some abstract object (with

potentially many o mapping to one õ). This process may be naı̈ve, done straightforwardly

but with limited efficacy. Crucially, our contribution includes describing how to enhance

the creation of φ by considering the relevancy of ground objects to the source policy

from which they originate. This approach identifies irrelevant objects in a Sπ, so they

do not correspond to any abstract object in Õ. Thus, unnecessary objects are eliminated,

abstracted away.

When any Sπ contains multiple objects of the same OO-MDP class Ci, multiple φ

mappings to S̃ exist. Given ni objects of class Ci in Sπ, and ñi objects of that class in

the S̃π, there are ni!
(
ni

ñi

)
possible mappings. If there are |C̃| object classes in the abstract

domain, then the number of possible mappings is the product of these terms for each

object class:

Φ =

|C̃|∏
i=1

ni

(
ni
ñi

)
. (6.9)

A mapping scoring procedure allows us to alleviate this burden, such that heuristic search

can discover a viable φ with certain desirable properties without the need to enumerate

all of Φ.

6.5.1.2 Inverse Mapping for Consensus

To construct the abstract policy π̃ based on actions referenced across the ground policies,

we define the inversion φ−1 : S̃ → {S̄ ∈ SD | φ(s̄) ∈ S̃, ∀ s̄ ∈ S̄}. To clarify, this

one-to-many mapping projects abstract states to a set of sets of states that forward-map to

the abstract state space. Thus, with S̃ and φ−1 in hand, we can compute φ−1(s̃)→ S̄, the
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set of source states to which any abstract state inverse-maps. Each s̄ may recommend a

different action across Π , so we must find the consensus action. This process is similar to

the partial policies built by PolicyBlocks, but requires more complex steps to account for

the inversion mapping. Assuming access to Q-values corresponding to the policies in Π

(which can be trivially determined if not readily available), we then acquire π̃ by finding

the consensus actions across S̄:

π̃(s̃) = arg max
a∈A

1

|φ−1(s̃)|
∑

s̄∈φ−1(s̃)

Q(s̄, a). (6.10)

While we consider deterministic policies here, extending this method to handle consensus

over stochastic ones could be done through interpolation, taking the average probability,

or the median action.

6.5.1.3 Scoring Grounded Policies

Many possible policies may exist when grounding the abstract policy. Thus, we need a

mechanism for judging how to best reconstruct a ground policy derived from the partial

abstract policy while maximizing the overlap of recommended actions. We rely on a

scoring mechanism to rank policies by assessing how much information they preserve

when grounded relative to the original source policies. The score, then, comes from the

amount of state-action pairs shared between the ground and abstract policies.

We define π̄ as the grounding of π̃ to the original task MDP from which π̃ was

derived, such that π̄(s) = π̃(φ(s)). To minimize reconstruction error relative to a source
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Figure 6.9: Conceptual diagram of abstraction and grounding. Objects are abstracted
away from the source tasks and grounded to the target task. PPB performs a merge when
grounding, while PTOPs does not.

policy π, we maximize a score defined as the overlap of consensus actions:

score =
|π ∩ π̄|
|π|

. (6.11)

The diagram in Figure 6.9 represents how POD handles grounding.

6.5.1.4 Mapping Search

We now consider how to ground the abstract policy to a new target task MDP. Since we do

not wish to score every possible mapping, we apply a step-wise greedy search (exhaustive

search is computationally prohibitive).

First, we define the greatest common generalization (GCG) as the maximal subsets

of objects appearing in both source and target. Formally, GCG = O ∩ Õ over classes,

that is, regardless of the objects’ instantiated attribute-values. We use the GCG in concert

with Φ (Equation 6.9), with that set of mappings limited to just those resulting from

merging pairs and triples of the source policies, and we determine b, its difference in

number of objects from the GCG. In a step-wise manner, for each b, we consider each
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Algorithm 2 PPB Power Merge
1: n← number of options
2: Π ← set of source policies
3: Ω ← empty option set
4: ω, ω̃ ← null
5: while |Π | > 0 and |Ω | < n do
6: for all {π} ← subsets(Π ) do . Get subsets, e.g., pairs and triples
7: g ← GCG({π})
8: π̃ ← merge(abstract(g, {π}))
9: π̄ ← ground(g, π̃)

10: if score(π̄) > score(ω) then
11: ω̃ ← π̃
12: ω ← π̄
13: subtract(Π , ω̃) . Subtract states covered by ω̃, as grounded to the S of each π ∈ Π
14: Ω ← Ω + ω

15: return Ω

mapping with one fewer object and take the one with the highest score: effectively, this

process eliminates the least relevant object. In Section 6.5.2.1, we implement the above

procedure as a greedy PolicyBlocks merge operation.

6.5.2 Two Portable Algorithms

Following the POD procedures discussed above, we derive two approaches based on ex-

isting option-related algorithms.

6.5.2.1 Portable PolicyBlocks

We now describe Portable PolicyBlocks (PPB), a novel variant of PolicyBlocks modified

to discover portable options. Like PolicyBlocks, PPB relies upon merge and subtraction

procedures. For PPB, we combine these processes into Power Merge (Algorithm 2).

Power Merge takes raw policies from the same domain and yields the set of n option

candidates. The core of the algorithm is a process that assembles as many of n as possible
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given the policies. Starting from an initial subset of the source policies (in our case, pairs

and triples), Power Merge first gets the GCG and produces an abstract policy. Crucially,

the grounding of this abstract policy is scored relative any previously recorded one and

kept only if it found to be the best candidate.

PPB Merge. We highlight the novel contribution of a modified merge operator and

subset strategy. Specifically, we restrict the subsets to only those valid pairs and triples;

upon empirical investigation, we observe that larger subsets beyond triples do not improve

performance, as suggested by Pickett and Barto (2002) [121]. Our modified merge applies

a greedy heuristic to merge step-by-step, and depends upon the aforementioned search

procedure. For example, suppose we have four source domain policies π1, π2, π3, and

π4 each containing a different k number of objects, with kπ1 < kπ2 < kπ3 < kπ4 . Then,

merging proceeds in this order: π4 is abstracted relative to π3, π̃4 and π3 merge to form

π4,3, π4,3 is abstracted relative to π2, π̃4,3 and π2 merge to form π4,3,2, and so on.

PPB Subtraction. The original PolicyBlocks subtraction procedure removes duplicate

entries from all policies, and is not strictly applicable at the same point in PPB due to

the latter’s process of abstraction used in the creation of option candidates. More pre-

cisely, the policy subtraction operation replaces co-occurrence of the same state-action

pair with ∅, a special “undefined” action for those states. In POD, source policies origi-

nate from MDPs of differing state spaces, making it ineffective to use subtraction directly

(and subtraction at the abstract level is not appropriate). However, we may retain the ab-

stract option candidate and ground it to each of the source policies in Π , and then apply
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subtraction just as defined in PolicyBlocks.

PPB Grounding. We distinguish different cases of grounding, in particular separating

the use of the ground operator in Power Merge and the later grounding of option candi-

dates to target tasks. The former determines the grounded actions that would be preserved

in π̃, relative to the GCG and initial policy, such that the resulting intermediary abstract

policy π̄ may be compared to the best known one using our scoring procedure. In the

latter case, grounding is done online for option candidates applied to a task task. At test

time, they must have their partial policies grounded to the specific states and actions of the

given task. Here, the factored nature of OO-MDPs allows us to apply incremental ground-

ing, circumventing the need to ever consider states beyond those specifically encountered

by an agent during rollouts. Simply, as new states are explored, the option candidate’s

partial policy may encounter undefined state-action pairs. In such instances, “grounding”

applies the mapping as previously discussed to find the known abstract states mapped to

by the new, unseen state. Thus, any anomalous state is interpreted in terms of its nearest

neighbors in the abstract policy space. Moreover, we leverage the nature of partial poli-

cies to scaffold the rest of the grounded options’ structure: known states comprise those

in Iω and unknown ones as having non-zero value for βω.

PPB Complexity

Computational complexity for PPB is dominated by the mapping procedure. In Algo-

rithm 2, we consider complexity in terms of the process applied to each option candidate.

That is, consider the partial policy to be incorporated into an option candidate. We must
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compute the greatest common generalization by applying our abstraction process, per-

forming a merge, and finally scoring (and grounding) the option candidate.

We begin with the GCG computation. Let nmin be the size of the GCG. Hence,

we let nmax be the size of the largest input domain in any source or target policy being

abstracted. Finally, as a convenience we define ∆ = nmax − nmin to be the difference in

number of objects, specifically the count of those that are abstracted away from the larger

of the source or target domains.

In the computation of Algorithm 2, the process of abstraction must remove ∆ ob-

jects. However, it considers up to nmax objects every time it is applied, in the worst

case. Furthermore, the algorithm must iterate over every state in source policy in order to

score the mapping properly. Thus, we obtain the complexity of a single step of the merge

operation:

O(∆nmax |Sπ|). (6.12)

The scoring procedure also adds a term to the overall complexity of PPB. Scoring

is applied to the resulting option candidate from the merged source policies. Importantly,

we note that scoring (in PPB) requires the option candidate to be grounded to each of the

source policies, because the score is based on all source states that contain the same state-

action pairs as the candidate. The process of grounding used here in scoring relies on the

same complexity as in the aforementioned merge. Finally, as with standard PolicyBlocks,

the state-action pairs covered by the candidate are subtracted from the source policies.

That is, given the highest-scoring candidate, we must again iterate over the source poli-

cies. The complexity in subtraction is therefore dominated by that of the scoring step.
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Taken all together, the overall complexity of PPB, with the additional terms are

derived from our use of PolicyBlocks, arrives at:

O

(
k |Π |3

∑
π∈Π

(∆nmax |Sπ|)

)
. (6.13)

Most crucially, it is practically infeasible to use the power set of source policies when

creating option candidates, a drawback inherited from PolicyBlocks. Therefore, some

heuristic must be applied to restrict or guide the selection of a subset. Following Pickett

and Barto’s suggestion in the original PolicyBlocks definition [121], we consider only the

set of all pairs and triples (and not the full power set), yielding O(|Π |3). Given these,

each combination of policies need only be examined k times, for each k option being

created. We also note that, in practice, we observe that PPB scales much better than this

reported worst case setting. This empirical behavior is, in part, owed to the fact that the

set of source policies will diminish with each iteration of PPB.

6.5.2.2 Portable Transfer Options

We implement POD directly into TOPs and call the result Portable Transfer Options

(PTOPs). As discussed in Section 6.3.2.1, a central drawback of TOPs lacks an informed,

automatic way to create mappings between source and target states. POD interfaces with

TOPs to achieve just that: the combined approach of abstraction, scoring, and mapping

search serve to define the translation of TOPs from one state space to another. The only

remaining issue is to select the best among option candidates; because there are no good

heuristics for a priori determining the performance of PTOPs in the target task, we simply
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transfer all option candidates. For PTOPs, the online grounding of option candidates to

undefined regions of its partial policy follows the same strategy as in PPB.

PTOPs Complexity

We report the complexity of POD applied to TOPs. First, we note that the point of

POD here is to provide an autonomously-constructed mapping for the transferred options

(avoiding the need for an expert). In this case, such mappings require computing the size

of the GCG, nmin. Thus, we obtain O(nmin), since the source policies are independent

of each other, and only nmin objects need be considered.

We reuse the variables nmax and ∆ as discussed in the PPB Complexity section.

Consider the mapping search process following a greedy heuristic. The abstraction step

has will iterate at most ∆ times, one step for each object by which the source and target

differ. In the worst case, the iteration must consider up to nmax objects for abstraction.

Because we score as we go, this step further entails iterating over all states, giving us the

term |Sπ|.

Taken together, the GCG computation is dominated by mapping search. The result-

ing worst case complexity for PTOPs is thus:

O

(∑
π∈Π

(nmin + ∆nmax |Sπ|)

)
, (6.14)

or equivalently, since the GCG term is clearly dominated by the abstraction and scoring
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term, the complexity is:

O

(∑
π∈Π

∆nmax |Sπ|

)
. (6.15)

6.5.3 POD Experiments

I now discuss the experimental methodology we use in our implementation of POD. The

goal with this investigation is to assess the two major aspects developed in POD, the

abstraction mapping process and the scoring mechanism. We therefore concentrate our

experiments on options in two domains comparing transfer under different conditions,

using several different state space sizes to demonstrate POD’s generalizability, measuring

performance using the average cumulative reward over a series of learning episodes.

Methodology & Setup. I refer readers to the original paper for a more extensive discus-

sion of our empirical methodology [159]. In summary, our experiments each use 20 trials

(e.g., every trial applies a different seed for pseudorandom number generation). Every

trial follows a complete transfer process, from training on a set of 20 randomized source

tasks to a randomized target task evaluation, in a domain with a differing layout or num-

ber of objects. Our results report confidence intervals (p < 0.05). We maintain a standard

learning algorithm across each of the transfer techniques; in all experiments, we use intra-

option ε-greedy QL (ε = 0.025) [150]. Other experimental hyperparameters include the

probability of termination (for each ω option, a flat probability βω of 0.025, with 1.0 in

goal and failure terminal states), a pessimistic initialization Q-value initialization, and a

consistent −1 per-step reward.
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Transfer Details. The main transfer metrics we consider are asymptotic performance

of the algorithms applied to the target. Thus, in assessing the graphs we generate, focus

should be placed on the curve or trend of each algorithm, noting any jumpstart in the initial

episode, as well as the point of convergence, at which the algorithm has settled on a policy.

The experiments are gauged against an oracle, the algorithm using an option with the

“Perfect” policy. “Perfect” here provides an heuristic for the theoretical yet impractical-

to-achieve (without expert knowledge) upper bound on performance. In other words,

the optimal solution for the target task. Additionally, the transfer methods differ for the

PolicyBlocks and TOPs approaches. The TOPs methods transfer all source policies, while

PPB and RPB only apply the top-scoring single option candidate. The original paper

discusses the transfer details in greater specificity [159].

Algorithms Tested. Our methods are Portable PolicyBlocks (PPB) and Portable TOPs

(PTOPs). As previously discussed, the existing techniques lack either inherent transfer

and require expert intervention to be reapplied in new target tasks with different numbers

of objects. Thus, in order to more fairly compare our methods with the original ones,

we include results for PolicyBlocks and TOPs with transfer via random mappings, both

in the abstraction and the grounding procedures. These algorithms, RPB and RTOPs,

respectively, highlight what naı̈ve transfer would look like, showing the value added by

the specific scoring heuristic we outline with POD.
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Figure 6.10: Example states: in Block Taxi (top row), the agent is yellow, passengers are
red, and walls are black; in Block Dude (bottom row), the agent is blue, blocks are yellow,
and the exit is green.

6.5.3.1 Task Domains and Results

Block Taxi Results

The Block Taxi domain is related to Taxi [34], but consists solely of passengers and

block walls (that occupy a cell rather than gaps between them). Rather than traveling

between multiple depots, the agent’s goal is to transport every passenger onto a specified

location. The taxi agent may drop off a passenger at any space, adding to the challenge.

For Block Taxi, we transfer from tasks with many-to-few objects, from few-to-many, and

also highlight a more extreme case of few-to-many.

First consider the case of transferring from harder tasks to easier ones, with fewer

objects and thus fewer steps to complete. Results for this scenario are shown in Fig-
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ure 6.11a. We interpret the graphs by gauging how much cumulative reward the algo-

rithm can accumulate over episodes (and thus, higher is better). Here PTOPs achieves a

statistically significant improvement over the other methods, both in terms of raw reward,

but also in the rate to which it reaches a good quality policy (reflected in the curve’s time

to convergence). The other algorithms overlap in their confidence intervals, so drawing

a conclusion about their usage in this case (many-to-few) is limited. Randomized map-

pings do not hinder performance (we see no negative transfer relative to QL), but their

transferred knowledge is unhelpful without some mechanism for better leveraging it, like

our scoring procedure in PTOPs.

Transferring from the few-to-many (4 to 6 passenger) tasks, we observe a more

stark difference (in Figure 6.11b). Noticeably, all methods improve a great deal over QL.

The POD methods perform best, though not statistically significantly better than RTOPs.

Our initial belief was that this lack of difference could be explained as follows: training on

the smaller tasks lends less behavioral knowledge to the learned policies once transferred

to to larger tasks. Essentially, there is an upper limit to how much behavioral benefit

can be extrapolated, such that transfer is still important but making scoring less useful

over simply applying randomized mappings (at least, as seen in RTOPs). However, we

discount this theory in the next experiment. Consider the case of an even more extreme

transfer, from two to seven passengers, with results shown in Figure 6.12a. Here, the

difference between scored POD methods and randomized mappings is significant; PTOPs

has the best performance, with PPB second. Both achieve higher reward and reach the

optimal policy faster than either RTOPs or RPB. Thus, the advantage of scoring for POD

may be hard to predict from task complexity alone, and warrants further investigation. We
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(a) Block Taxi, 6 to 4. (b) Block Taxi, 4 to 6.

Figure 6.11: Performance in the Block Taxi domain. In Figure 6.11a, transfer is done
from tasks of six passengers to four passengers. These results highlight the value of
scoring, since the methods with a random mapping degrade to baseline performance. In
Figure 6.11b, transfer is done from four to six passengers. In this case, transferring to
a harder task, there is a clear and significant benefit afforded by discovering and using
portable options.

also note that RTOPs and RPB also improve significantly over the baseline, confirming

that randomized mappings can give positive transfer.

Block Dude Results

The Block Dude tasks are based on the game of the same name.1 We treat Block Dude

as a typical gridworld, but viewed as a “side-scroller” rather than top-down. Each task

consists of a level from which the agent must escape by reaching a door. Solid walls

block its path, and thus the agent must collect and stack blocks to surmount the walls

and reach the door. Level layouts are randomized for reach trial. The agent occupies a

cell (x and y coordinates) and includes a direction (left or right) in which it faces. The

agent may move forward, move backward, pick up blocks, and drop them. If the agent

is not carrying a block, the agent may collect one if it is adjacent to one and facing it.

1http://azich.org/blockdude/
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Gravity applies, causing the agent and blocks to fall down to the lowest open cell. The

agent may climb as well, moving up and forward if there is a block in front of it under

an open space in the direction it is facing. Again, the goal is to stack blocks, often into

staircase-like structures, making a path to an elevated or otherwise hard-to-reach door

(exit), terminating the episode. Importantly, the agent may reach a state from which it

cannot recover, so episodes end after a certain maximum number of steps.

Figure 6.12b shows the results in Block Dude. Here, the randomized mappings offer

no improvement over the baseline QL. RPB and RTOPs see no benefit because the variety

in Block Dude makes most mappings unhelpful (and thus, a random selection of them

adds no benefit). However, both PTOPs and PPB achieve statistically significantly better

results. Upon investigation of the success of PTOPs over PPB, we found that noise in the

source policies was causing interference. In particular, PPB’s merge procedure abstracted

away more details than PTOPs, including useful edge case state-action pairs. We find

retaining information while scoring is the most consistently useful transfer strategy. Thus,

we content that, in general, as the number of possible mappings increases, the utility of

our scoring mechanism for POD also increases.

Overall, from all experiments we consider, the combination of abstraction and scor-

ing (e.g., heuristic search over mappings) provides a benefit in most cases. Though the

scoring method never negatively impacts performance (and therefore there is no reason

not to use it), we infer that it does not always yield the best possible mapping. Hence, it

remains an open question for future work to find alternative mechanisms for scoring or

more principled approaches to selecting policy subsets prior to merging.
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(a) Block Taxi, 2 to 7. (b) Block Dude (random layouts).

Figure 6.12: Performance on Block Taxi and Block Dude. In Figure 6.12a, transfer is
done from tasks of two passengers to those of seven passengers, shedding light on the
immense value of portable options when task complexity differs greatly. In Figure 6.12b,
the task is difficult to learn even for the oracle option upper-bound. Note that both PTOPs
and PPB begin converging more quickly with improved asymptotic performance relative
to the random and baseline methods.

6.5.4 POD Summary & Context

In summation, the POD framework offers a comprehensive framework for performing au-

tomated, bottom-up, option discovery that results in significant knowledge transfer across

tasks of varying complexity in OO-MDP domains. We describe the Portable PolicyBlocks

(PPB) and Portable Transfer Options (PTOPs) methods. We assess their performance rel-

ative to a baseline and an oracle. Crucially, we analyze a heuristic mapping and scoring

mechanism that, when incorporated into POD methods, allows them to select reasonable

and valid mappings from the combinatorial set of possible mappings, outperforming the

same methods with random mappings.

We draw a connection between POD and a wider literature of option discovery and

the less-explored topic of option transfer. Notably, POD provides a complete procedure

from learning in the source domains to the autonomous mapping of options abstractly
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into a target domain. What is gained here, over related work, is the elimination of expert

knowledge. Note, though, that we also make an assumption for POD to work: that the

domain is defined in terms of objects. Previous efforts in option discovery require direct

analysis of the state space: local graph partitioning [143], clustering [103], bottleneck

state discovery [104, 110], and betweenness centrality [141]. POD removes the assump-

tion of an expert or the requirement to perform a priori analysis. POD more reasonably

requires an OO-MDP specification, no analysis or direct access to the state space itself.

In many instances, this requirement is trivial since any factored state space MDP can put

its state factors (features) in arbitrary boxes, calling those objects. This property (elimi-

nating expert knowledge) makes POD ideal for cases where the full MDP is not known

beforehand, which is common in many realistic domains, or where the reward functions

differ among source and target; similarly, POD’s autonomy may lend better to application

on partially-observable MDPs, common to robotics settings, which we hope future work

will explore. In terms of option transfer, one important method introduces a factoring

across what is intrinsic and extrinsic to the agent, what may be called the agent-space

and problem-space, respectively. In keeping the state spaces of options factored among

an agent-space and problem-space, an agent’s learning can occur at two levels, so that

one may be varied while the other is held constant [80, 85]. Using an agent-space allows

options to be learned and transferred to new problem-space tasks; however, the work

cited here relies on some degree of feature engineering, such defining useful relational

attributes (e.g., a feature that captures “the nearest block” to help the agent learn in its

agent-space). Our hope with POD is that we can bring such ideas in option transfer into

an option discovery setting, alleviating the burden of expert knowledge by performing
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abstraction algorithmically.

6.6 Conclusion

This chapter has introduced the central paradigms of hierarchical RL and planning, out-

lining the difference between top-down and bottom-up approaches to handling subtasks.

Taking the latter as a starting point, I cover the well-studied Options formulation of sub-

tasks, and identify key questions relating to learning them. In terms of acquiring option

dynamics efficiently, without sacrificing performance, I introduce the expected-length

model of options (ELM) and demonstrate its desirable properties over the multi-time

model in a domains of increasing complexity. The disparate goals of learning to create

options and then transferring learned options are united in our portable option discovery

(POD) framework, for which we demonstrate transfer under a variety of circumstances,

and analyze the importance of heuristic search and scoring mechanisms for finding ab-

stractions that generalize and improve transfer. Altogether, the bottom-up approach to

subtasks creates practical representations derived directly from the source environments.

While much of prior research results in options that are tightly coupled to their source, I

show how such methods can be made to transfer knowledge, as exemplified by the reward

and transition approximation of ELM and the generalized object-based state abstractions

of POD mappings. In the next chapter, I investigate a different, top-down approach within

a planning context, and investigate how making a new structural assumption about sub-

tasks breaks their close ties to the source domain and greatly improves the ability to handle

temporal abstraction at multiple levels.
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Chapter 7: Abstract Decision Hierarchies

7.1 Introduction

I have explored how hierarchical decision making may be achieved through a bottom-up

strategy, where agents learn to create and solve subtasks by assembling the components

of an option. Now I consider the inverse, top-down paradigm where an explicit hierarchy

is imposed on an agent’s understanding. Critically, this approach invariably relies on a

structure, the “hierarchy,” that encodes some form of domain knowledge, often in the

form of subtask-dependent admissible actions and state abstraction (including arbitrary,

nonlinear mappings not based on state aggregation). Such knowledge most often comes

from human experts, as is the case in the examples discussed in this chapter; however, the

next chapter will explore methods for agents to learn both subtasks and hierarchies.

My focus also shifts from learning to planning, assuming that we can provide mod-

els for subtasks, while seeking to have our agents figure out the solution to long-term,

complex tasks. In the top-down paradigm, by assuming some prior knowledge we gain

robustness to the problems challenging the algorithms in the previous chapter. Namely,

it helps address the issue of combinatorially expanding ways of considering objects and

actions as their numbers increase. Introducing abstraction to hierarchical decision making

means that each subtask need only consider the objects and actions most relevant to its
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individual task. In particular, this chapter covers the background on top-down approaches

including MAXQ (for planning) and abstract Markov decision process (AMDP) hierar-

chies, with material based upon discussions in Gopalan et al. [55] and Winder et al. [171].

7.1.1 Motivating Example

Consider a “taxi” scenario, in which the agent (a taxi) must ferry passengers among vari-

ous stations. The optimal policy minimizes the overall distance it takes for the taxi to get

to each passenger and put them each at their desired location. Even in describing the task

in natural language, a clear hierarchical decomposition is expressed: an agent must both

“get” and “put” passengers, with both of those steps requiring the agent to “navigate” its

environment. Recognizing this breakdown is exactly what was achieved by Dietterich

(2000) [34] in the original presentation of the Taxi problem, culminating in the hierarchy

shown in Figure 8.2b. This task hierarchy represents subtasks as nodes in a directed graph

from the ROOT task down to leaves, primitive actions of the ground MDP, and arcs denote

that a child node provides an action available to the parent subtask.

In Taxi, ROOT captures the overall goal, while GET is parameterized over pas-

sengers and satisfied after an agent performs NAVIGATE and “Pickup” of the selected

passenger. Likewise, a parallel recursive completion of subtasks down the other side of

the graph is needed to PUT the passenger. Clearly, restricting the set of available actions

at any time directly reduces an agent’s search space. In addition, state abstraction may

eliminate objects irrelevant to the task, such as walls for the Get and Put tasks, or use

high-level relations to express objects’ locations more abstractly. For example, one could
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be “at(passenger, location)” for the Root subtask, converting from grid positions (e.g., x-y

coordinates) to re-consider states in terms of relations or predicates. In sum, an abstract

task hierarchy such as this one for the Taxi domain reflects how human designers frame

and communicate hierarchical task descriptions in terms of subgoals, facilitating the en-

coding of knowledge. The ease of this goal-focused top-down approach for expressing

subtasks abstractly may be compared with that of options, where providing a full policy

for each option is not as straightforward process for human designers. Moreover, captur-

ing repeated patterns of behavior in subtask policies allows them to be shared among all

parent subtasks, facilitating reuse and efficiency.

7.1.2 Subtasks in a Hierarchy

For an agent planning top-down, a hierarchy of subtasks enhances its ability to consider

temporally-distant states and efficiently reach more significant points of interest. Chap-

ter 6 examined task hierarchies for reinforcement learning with options; here, I reframe

them in terms of planning and take a closer look at MAXQ in this model-based context,

as well as task hierarchies of AMDPs.

7.1.2.1 MAXQ

MAXQ [34] achieves temporal abstraction via task hierarchies. A MAXQ agent reframes

a base MDP in terms of smaller MDPs that work together to construct a piece-wise value

function for the overall task. Formally, given an MDP M , MAXQ decomposes M into a

set of nMDPs {M0,M1, . . . ,Mn}, one for each subtask. Computing the value function of
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a policy proceeds by replacing the recursive part of the standard Bellman equation, when-

ever the policy would lead to a child subtask, with the addition of that child’s completion

function, the core mechanism for MAXQ value decomposition.

MAXQ uses the idea of a completion function to represent the expected discounted

reward of current task i after completing subtask (or action) a while in state s, C(i, s, a).

Then, action-value is decomposed recursively, Q(i, s, a) = V (a, s) + C(i, s, a), in terms

of the value of the state for the child a (which depends on Q at that lower level) plus

the completion function of the respective task. Thus, planning with MAXQ (such as

in [35]) is an inherently bottom-up process; I will compare this to top-down planning

using AMDPs.

MAXQ achieves a recursively optimal solution, where the policy is optimal at each

level of the hierarchy. Options differ in providing a hierarchically optimal solution that

achieves the maximum reward at the base level [34, 150]. Therefore, plans in MAXQ

can be suboptimal from a global perspective. However, in trading total optimality for

near-optimal solutions, recursively optimal methods can offer significantly faster planning

times.

7.1.3 Top-Down Approaches

In a bottom-up process such as options or MAXQ, planning requires expansion of each

node recursively down the hierarchy to determine value or action-value. Top-down ap-

proaches attempt to avoid this taxing search by focusing only on the child subtasks worth

expanding. The relevant history of top-down search begins with STRIPS [40] and its
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hierarchical extension abstraction-based STRIPS (ABSTRIPS) [135]. As a means-ends

analysis planner, the STRIPS algorithm performed problem-solving by searching ahead

(hence, planning) to a goal state through possible states following from some initial state,

given a set of conditions and operators. This propositional “action language” approach

may be viewed analogously to the stochastic framing of MDP transition dynamics, es-

pecially for factored structures like OO-MDPs where the changes in state factors for

each action are modeled probabilistically via dynamic Bayesian networks. Motivating

ABSTRIPS, the central drawback of STRIPS is its limited planning horizon for a “rea-

sonably complex domain” that inevitably fell into a “combinatorial quagmire” [135]. By

first identifying abstractions based on criticalities of action preconditions, ABSTRIPS

constructs abstract plans in descending precedence of difficulty [79]. Thus, it effectively

decomposes the search space of a problem into subtasks arranged in a hierarchy of com-

plexity. The net effect of ABSTRIPS over STRIPS is substantially reducing the number

of branches that must be explored while searching.

Another iteration of top-down planning bears the name of hierarchical task net-

works (HTNs). This family of related algorithms builds upon a STRIPS-like approach,

typically from a partial-order planning setting. Examples include NOAH, NONLIN,

UMCP, and SHOP [39]. Planning with HTNs typically requires the task network it-

self (as with a task hierarchy, specifying the relations among primitive and non-primitive

subtasks), the primitive operators, and the non-primitive “methods” (high-level opera-

tors) [38]. As with ABSTRIPS, HTNs enable greater efficiency in searching and more

expressive solutions. Additionally, HTNs may be learned from data, but require consid-

erable expert (and accurate) knowledge of the outcomes of subtasks to work [116]. How-
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ever, these planning approaches assume deterministic transitions and are not applicable

to MDPs and the assumptions they make.

Top-down approaches for MDPs include hierarchies of abstract machines (HAMs) [118,

119], hierarchical dynamic programming (HDP) [16], DetH* [17], and MAXQ-OP [14,

15]. HAMs define subtasks as finite state automatons (hence, machines) such that the

policy one expresses is essentially a program of actions. HAMs adhere to typed abstract

states (Action, Choice, Call, and Stop) providing the language necessary to achieve ar-

bitrarily complex behavior; the drawback, however, is the immensity and complexity of

the design burden for the machines. HDP leverages hierarchical maps (for robot navi-

gation) as subtasks of an MDP, showing how a hierarchical variant of VI may be paired

with state abstraction via clustering. DetH* similarly applies clustering to create abstract

states, but instead pre-computes one high-level policy, which is then used to subdivide the

ground MDP into subtask MDPs. MAXQ-OP computes an approximation of the MAXQ

completion function for a given task hierarchy. Notably, it searches forward through state-

action space, guided and limited by heuristics. In a way, MAXQ-OP turns the bottom-up

problem of MAXQ into a top-down online search of plans.

Across these various methods, many limiting assumptions are made, such as a pre-

requisite that states may be clustered meaningfully (not split into too few or too many),

or the requirement that a costly algorithm (in terms of computational complexity) such as

VI must be used, or that the same algorithm is applied across all subtasks. The methodol-

ogy I outline for hierarchies of abstract Markov decision process in the following sections

circumvents these issues, to allow arbitrarily expressive state abstraction functions and

subtasks defined independently, so that each subtask may use a separate planner most
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appropriate to it.

7.2 Abstract Subtask Hierarchies

We introduce a new mechanism for hierarchical probabilistic planning: hierarchies of

abstract Markov decision processes (AMDPs). The background and discussion presented

here is based on the paper introducing AMDPs, which was work with Nakul Gopalan,

Marie desJardins, Michael Littman, James MacGlashan, Shawn Squire, Stephanie Tellex,

and Lawson Wong [54, 55]. In this collaboration, my main contributions were in the

generation of results and their empirical assessment, as well as the initial design and

definition of AMDPs.

The abstract Markov decision process encapsulates an MDP with state abstraction

and termination conditions, defining a subtask relative to the ground MDP. Crucially, each

AMDP possesses a local model (a reward function and transition probability distribution).

This model operates over its abstract state-action space, without the need to access subtask

models directly, the key difference between it and other methods. Thus, while AMDPs

are most closely related to MAXQ, they go beyond its formalism by defining each subtask

as a separate MDP. We contend that framing subtasks as MDPs in their own right offers

the most natural way to regard them: when you have a decision to make, use a decision

process. Thus, hierarchical decision making may be best represented with hierarchies of

abstract subtasks, each its own MDP.
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7.2.1 Abstract Markov Decision Processes

We define the abstract Markov decision process as a 7-tuple: M̃ = 〈S̃, Ã, T̃ , R̃, γ, Ẽ , φ〉,

relative to some ground MDP M . The AMDP M̃ has its own state space S̃ consisting

of states abstracted from M via the state abstraction function φ : S → S̃. The abstract

actions Ã are either child subtasks (other AMDPs) or primitive actions inM . The abstract

model is local, specific to the decision space of this subtask, T̃ : S̃ × Ã × S̃ → [0, 1] and

R̃ : S̃ × Ã × S̃ → R. Additionally, we consider a set of terminal states, Ẽ ⊂ S̃, which

contains all goal and failure states of the subtask. One assumption we make in this and

subsequent discussions of AMDPs is that M is factored, so φ projects ground states into

abstract state space typically by removing factors, aggregating states (mapping multiple

sm to the same s̃), or applying a nonlinear transformation (for instance, as specified by an

expert).

The abstract Markov decision process (AMDP) framework provides a way to hierar-

chically decompose tasks into subtasks, each of which is represented as its own complete

MDP with local state abstraction, reward, and transition functions [55]. Each node in the

task hierarchy is treated as an encapsulated decision problem, differing from MAXQ’s

value function decomposition via completion functions, and the way in which an option

pre-specifies its internal policy [150]. Successive child subtasks of AMDPs are designed

to be smaller, more focused, and easier to solve than the ground MDP, as with other hi-

erarchical approaches, by reducing the state and action spaces for any given decision.

However, because AMDPs explicitly represent each subtask as a decision process, they

permit all the relevant theory and practice for handling such problems. This difference is
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the critical one among AMDPs and all prior approaches to subtasks: here, each subtask

possesses all necessary pieces for planning and producing policies, with respect to only

its immediate subtasks, independent of the ground MDP.

7.2.2 A Hierarchy of AMDPs

An abstract Markov decision process (AMDP) hierarchyH = (N,E) is a directed acyclic

graph of subtasks, derived from the MAXQ-style task hierarchy, decomposing a com-

plex planning problem into a series of actionable subtasks. The internal nodes in N are

AMDPs and the leaf nodes are primitive actions of the ground MDP. An edge in E indi-

cates that the parent owns the child as a subtask; thus, the parent possesses a (symbolic)

action in its abstract action space Ã corresponding to the linked child. One assumption

is that AMDP hierarchies have one unique root AMDP, which serves as a subtask whose

terminal states represent those of the ground MDP.

AMDP hierarchies produce optimal policies at each AMDP and, like MAXQ hier-

archies, are recursively optimal given correct local state abstraction, reward, and transition

functions. AMDP hierarchies enable top-down planning in stochastic environments, such

that an agent plans only for subtasks that help achieve its main goal without computing

plans for irrelevant subtasks. An AMDP is Markovian with respect to its own state-

action space and transitions. The use of state abstractions, however, makes the abstract

higher-level problems not necessarily Markovian relative to the base domain [13]. The

execution of AMDP plans, thus, functions similarly to options in semi-Markov decision

processes [150]. One consideration that arises from this property is the handling of failure
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in subtasks. There is no inherent guarantee that non-goal termination conditions of child

AMDPs are reflected in the state space of a parent AMDP. Thus, it is necessary when cre-

ating AMDPs that the designer ensures both the projection function and terminal sets are

sufficiently expressive to capture such failure cases. Common forms of state abstraction

should abide by five conditions that permit safety and theoretical properties outlined in

Dietterich (2000) [34]. Similarly, a human expert must specify the components of each

AMDP subtask (φ, failure and goal conditions for Ẽ , and Ã), but does not need to create

the MAX and Q nodes as in MAXQ.

7.3 Planning with a Hierarchy of AMDPs

We now discuss planning with a hierarchy of AMDPs. In the context of the prior work

discussed in this chapter, this approach may perhaps best be seen as top-down planning

analogous to MAXQ. As with HTNs, we proceed from the root subtask; as opposed to

MAXQ, we “complete” the value function within the confines of the AMDP itself. Be-

cause AMDPs include a local model and state space, their actions may be treated sym-

bolically (i.e., executed in simulation according to the subtask model), a policy may be

generated within that AMDP alone. To reiterate, given an AMDP, no decomposition to

lower-level subtasks needs to occur. Thus, the first step in planning with a hierarchy of

AMDPs is to create a plan at the most abstract level (the root node). For each subtask

in the plan produced at the root, this process is applied again recursively for each next

subtask. Once a subtask selects a primitive action as the next step, the agent actually

executes this action and observes the true successor state. Combined, we attain an online
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Algorithm 3 Planning with a Hierarchy of AMDPs
1: function START(Hierarchy H , MDP M , state s0)
2: SOLVETASK(H , M , ROOTINDEX(H), s0)
3: function SOLVETASK(H , M , AMDP index i, st)
4: M̃i ← GETNODE(H, i)
5: if IS-PRIMITIVE(M̃i) then
6: a← RESOLVE(M , M̃i)
7: st+1 ←EXECUTE(M,a)
8: t← t+ 1
9: else

10: s̃t ← φ(st)
11: while s̃t /∈ Ẽi do
12: πt ← PLAN(M̃i, s̃t)
13: ã← πt(s̃t)
14: j ← GETCHILDINDEX(H, i, ã)
15: st+1 ← SOLVETASK(H,M, j, st)
16: s̃t+1 ← φ(st+1)
17: t← t+ 1

18: return st

algorithm capable of tackling subtasks independently, all while under uncertainty.

Pseudocode is presented in Algorithm 3. The required input are a hierarchy, ground

MDP, and some initial state. Planning then proceeds from the AMDP at the root index

of the hierarchy. With each call to SOLVETASK, we check if the AMDP is a primitive

subtask (the base case), and if so we find the corresponding primitive action from the

ground MDP, and execute it. Otherwise, when the current AMDP is composite (non-

primitive), we determine the current abstract state, create a plan, make a recursive call to

that child subtask, and once control returns to this subtask, continue this process until a

terminal state of this AMDP is reached.

I note that I have updated Algorithm 3 from the original we published in Gopalan et

al. (2017) [55]. In addition to more detail, there are two significant changes. First, prior

work relies upon a level-wise definition of AMDPs, such that each on the same level used
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the same state abstraction function. The motivation for that requirement was to allow per-

AMDP planners to be shared across AMDPs with the same abstract state space. I make

no such restriction here, which is relevant for the new methods in the following chapter,

such that I allow each AMDP to have their own φ; the trade-off is that an expert (or some

programmatic mechanism) must be used to recognize and assign planners that can be

reused among different AMDPs. Second, this pseudocode shows the decision to move

the planning step inside the main while loop of SOLVETASK. This alteration allows for

step-by-step replanning at the abstract level. Consider the case where the real execution

(Line 7) returns a ground state that projects into the AMDP state space and results in

a different abstract successor state than the policy expected. That is, when φ(st+1) →

s̃t+1 6= Eπt [S̃t+1 | S̃t = s̃t, Ãt = ã]. Thus, an updated policy may be computed based

on the context of the newly observed state. To avoid unnecessary computation, πt may be

cached and reused if there is no difference in the next expected abstract state.

One possibility of the AMDP description of subtasks is their ability to represent

parameterized or lifted subtasks. Using an OO-MDP or other factored state space makes

this process straightforward. Let η be a list of state factors that may be parameterized,

then H may include traditional AMDPs (M̃ ) and lifted ones (〈M̃, η〉); in an OO-MDP

these may be objects of a particular class. In the Taxi domain, we have lifted subtasks for

NAVIGATE (parameterized over depot locations), and both GET and PUT (parameterized

over passengers). Then, in the GETNODE subroutine of Algorithm 3, it generates all

possible groundings of η and selects the relevant M̃i.
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7.3.1 Properties

I now elaborate upon some of the properties of planning with AMDPs, relating it in con-

text to classic hierarchical RL and discussing optimality. The discussion I provide here

expands on the more limited one in the original paper [55], and is based in part on my

work for ELM (Section 6.4) [4] and PALM (Chapter 8).

Relation to Options

The most prominent method used for planning and learning in MDPs with a hierarchy of

tasks is the options framework [150] (refer to Definition 6.1). As discussed, an option

primarily defines a subtask, like an AMDP. Similarly, in practice, options are designed

to move an agent through state space into or out of a “bottleneck” or landmark state.

While AMDPs are closely related to options, they differ in that they explicitly maintain

a local transition and pseudo-reward model, from which many different policies may be

generated. AMDP subtasks are not locked into a policy, as with options, but are MDPs in

their own right, permitting the use of any planning algorithm to produce a new policy at

any time, independent of the other tasks. In making a decision, an option planner holds

with the prescribed policy; AMDP planners generate their policy, and are correspond-

ingly flexible and more robust to changes. In this sense, an AMDP is a formal tool for

generating an option policy online. Thus, I contend that AMDPs are a natural way of

framing subtasks of a hierarchy, embodying the guiding design principle that, whenever

an agent has a decision to make, treat it as a full decision process unto itself.
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Relation to MAXQ

The core difference between AMDPs and MAXQ is the latter’s use of a derived model:

transitions and rewards of subtasks are derived from the base MDP. While a MAXQ sub-

task is functionally analogous to an option, it exists under different structural and theoret-

ical assumptions: a MAXQ agent leverages its hierarchy by learning the value function

piece-wise for each node, expressed in terms of the smaller, more focused value functions

of its children. MAXQ achieves a recursively optimal solution, such that it yields policies

optimal at each level of the hierarchy, assuming its children are optimal [34].

AMDPs act as a kind of bridge between MAXQ and options, differing from both by

treating each decision point in a hierarchical plan as a completely separate MDP, with its

own state abstraction and local model of reward and transitions. In this sense, an AMDP

serves as an SMDP relative to the ground MDP, with its actions functioning like options;

to learn an AMDP model, thus, is to learn an option model. The consequence for planning

with a hierarchy of local models is that, unlike planning with a hierarchy of derived-model

MDPs like MAXQ or option models, every policy may be generated in an encapsulated

way, expanding only those child subtasks that are absolutely necessary. In other words, an

agent planning over a hierarchy of AMDPs never needs to solve subtasks that are not on

the critical path to its goal, whereas both MAXQ and options must recursively compute

even unrelated subtask solutions to determine how best to act. This property arises chiefly

due to the top-down nature of the AMDP framework, and keeping this property motivates

my next work on learning AMDP hierarchies and models.
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Optimality

Dietterich (2000) covers types of optimality in the context of hierarchical RL, including

recursive and hierarchical optimality [34], of which MAXQ and options are examples,

respectively. The discussion is built upon previous work on the optimality of hierarchical

policies [31, 120]. In brief, an algorithm that produces hierarchical policies may be re-

garded in separate degrees of optimality. One calls a policy hierarchically optimal when it

yields the greatest return of any policy that could be specified by the hierarchy; assuming

that the hierarchy’s subtasks properly decompose the domain, this policy is typically also

globally optimal with respect to the ground MDP. Dietterich defines recursively optimal

policies, however, as those that are optimal only with respect to their given subtask. More

precisely, they are optimal in the SMDP defined by the subtask relative to the ground

MDP. The key difference is as follows: whereas a hierarchically optimally policy may

take locally suboptimal actions to complete a subtask if doing so gives better results with

respect to solving the whole task, recursively optimal policies act more greedily, com-

pleting each local subtask optimally to the potential detriment of the return of policy’s

rollout.

For AMDPs, I consider their optimality in this context, located in between that of

options and MAXQ. Given a local model and state abstraction function, each AMDP sub-

task can be solved optimally, since it is simply an MDP unto itself. Hence any general

AMDP hierarchy may produce recursively optimal policies. Yielding hierarchically opti-

mal policies is not guaranteed in general. Consider a hierarchy for a multi-passenger Taxi

domain: if the distance between depots is abstracted away from the root AMDP, then poli-
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cies that GET and PUT passengers cannot be distinguished (GET-PUT-GET-PUT would

look the same as GET-GET-PUT-PUT abstractly, though their grounded rollouts may be

hugely different). Proving that a given AMDP hierarchy yields hierarchically optimal

policies would require establishing certain invariants related to the influence of primitive

actions on changing state factors in the ground MDP that are preserved in all AMDPs. In

practice, however, it is often trivial to design AMDPs that yields hierarchically optimal

policies (which is true for the expert-defined AMDPs discussed in the related work of

Section 7.4).

7.4 Recent Examples & Results in Literature

I now provide an overview of AMDP planning in recent literature. In the original AMDP

paper [55], we demonstrate its applicability in three highly stochastic domains: fickle

Taxi, Cleanup World, and a situated robotics variant of Cleanup World (implemented

on a Turtlebot). In the former two cases, our experimental results evince the value of

AMDP hierarchies by decreasing the required planning budget from hundreds of thou-

sands of Bellman backups to thousands. The experiments involving the robot demonstrate

the wider applicability of AMDPs in real-world settings. For that domain, a continuous

ground-level state space is incorporated into the lowest-level AMDP, offering a substantial

challenge. Where options and MAXQ would require orders of magnitude more backups,

the speedup afforded by the expert-defined AMDP hierarchy allows the Turtlebot to solve

the task online, in real time.

Continuing in the context of robotic sequential decision making, AMDP hierarchies
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can jumpstart learning dynamics for the manipulation of objects [78]. This work outlines

and explores solutions for the tabletop organizational packing task, in which graspable

objects may be picked, placed, and moved among containers on a table. They find that

subtask transition functions are more easily learned from demonstrations on simpler 1-

item 1-container tasks, by the inherent relation-based nature of the OO-MDP formalism,

and that transfer to harder tasks is subsequently enhanced by the structure and reuse of

AMDPs. Additionally, because of the high difficulty in exploring the transition space

of such a robotic control domain, they contribute two novel representations of action

selection (state-centric and action-centric). Combined and implemented in the execution

of AMDP hierarchical policies, the resulting algorithm successfully finishes the more

complex 4-item 2-container task as demonstrated on a physical robot.

Deep abstract Q-networks [131] extend the AMDP framework to the context of

deep reinforcement learning, using neural networks as value function approximation.

They demonstrate the applicability of an object-oriented AMDP planner and learner to

handle sparse rewards, solving complex tasks with backtracking and better explainability

than the standard deep Q-network algorithm.

Other research has explored the use of AMDP hierarchies in the setting of lan-

guage grounding [10, 74, 75]. In particular, they consider the grounding task in which

commands are expressed in natural language by a human observer and interpreted by a

robot performing the desired actions. They apply AMDP hierarchies as a scaffold for

subtasks in their proposed deep recurrent action-goal grounding network, or DRAGGN

framework. Leveraging OO-MDPs, they describe how goals and actions may be repre-

sented semantically in terms of parameterized factored reward functions (that may bind to
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various target objects in a domain). Given a textual command, a DRAGGN model inter-

prets it in terms of a lifted reward function and degree of abstraction (level of an AMDP

hierarchy), which are passed to a grounding module (in this case, a lookup of objects by

identifiers), and then solved as an AMDP by incremental planning and execution. The in-

termediary lifted representation uses two separate neural networks; one for the “callable

unit” and another for the binding arguments; one DRAGGN variant explores learning

a shared embedding space for those two networks, while another DRAGGN keeps the

learned embeddings independent. These DRAGGN approaches are compared with other

language models (IBM2, a feedforward neural network, and both single- and multi-output

recurrent neural networks), and excel in both the simulated Cleanup World and physical

Turtlebot environments. Ultimately these efforts show the flexibility of AMDPs and their

ability to generalize across related task, even in a complex scenario, for example, as an

agent physically embodied in a robot directed to solve tasks by a person using natural

language.

7.5 Conclusion

The previous chapter investigated bottom-up approaches to learning, while this chapter

covers various top-down strategies for planning. At the core of my current discussion

is a realization about the nature of hierarchical probabilistic planning: that we can apply

recursion and consider each action we approach as its own proper subtask. In other words,

in using AMDPs we are saying: treat every decision as its own decision process. This

perspective is critical for my final synthesis of these ideas in the next chapter, investigating
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how to combine abstract learning and planning in a comprehensive framework.
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Chapter 8: Planning with Abstract, Learned Models

I introduce a novel approach for decision-making agents to first decompose a complex

probabilistic planning problem into a hierarchy of tasks, and then learn models for all

of the generated subtasks. The hierarchy can either be learned from experience or sup-

plied by a human expert. Once equipped with a hierarchy, a model-based reinforcement

learning strategy enables the agent to learn to produce plans that solve a large, stochastic,

feature-rich environment where each subtask is represented independently as an abstract

Markov decision process. My primary contribution consists of two general algorithms:

one to construct hierarchies of tasks, and one to learn their models entirely from data. My

approaches are flexible, able to integrate existing hierarchy- and model-learning algo-

rithms together with any given MDP planners, as different domains may require. More-

over, they are scalable; combined, my methods learn to plan more efficiently than the

most similar existing model-based hierarchical learning algorithm, R-MAXQ, achieving

greater cumulative reward faster, while also offer a more generalized approach where

learned subtask models are independent, able to be recombined or transferred.
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8.1 Introduction

Complex human decision making requires reasoning abstractly over time and goals: rec-

ognizing, learning, and planning repeatable patterns of behavior that facilitate reaching

a time-distant goal. Solutions to long-term tasks can be achieved by hierarchically com-

posing temporally abstract subtasks that achieve intermediary subgoals that focus only

on locally-relevant context and utilize actions at the appropriate level of abstraction. To

handle temporal abstraction, previous efforts, such as the options framework [150] and

MAXQ [34], have investigated extensions to Markov decision processes (MDP), the stan-

dard formalism for modeling probabilistic decision making. These efforts plan and learn

using hierarchies of actions, tasks, and goals. They decompose complicated tasks into

more manageable subtasks, then sequentially compose the subtasks to solve the initial

task. A primary limitation of prior work is that either or both of the hierarchical structure

and subtask models must be expert-defined, hand-crafted, or engineered in some way (the

task hierarchy and policies, for MAXQ and options, respectively). Such a requirement

is challenging, labor-intensive, and not guaranteed to produce a representation that best

enables the agent to solve its goals or transfer knowledge to new, related problems.

To that end, I present two novel algorithms: one that learns to construct hierarchies

of abstract Markov decision processes from data and another that learns the models for

each subtask in the hierarchy. Together, these approaches reduce the burden on an expert

to design tasks and engineer their connections and state abstractions. Furthermore, my

results demonstrate that learned hierarchies can be more effective than expert hierarchies,

outperforming the latter in certain instances. The core contribution of this work is the
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(a) Example Taxi state. (b) Example Cleanup state.

Figure 8.1: Example OO-MDP states. In 8.1a, objects are the taxi (gray), walls, depots,
and passenger (red). Objects in 8.1b include the agent, two blocks, three doors, and three
rooms.

union of HA-Maker, which takes any general hierarchy-learning algorithm and converts

its output tasks into abstract MDPs (AMDPs), and PALM, which applies model-based

reinforcement learning to plan over the hierarchy of learned AMDPs. I demonstrate that

my combined approach outperforms the most closely analogous model-based hierarchical

learning algorithm, R-MAXQ [69].

The remaining content of this chapter is based upon Winder et al [171], and a pub-

lication currently in submission, leading from AMDPs in general to a more comprehen-

sive model-based reinforcement learning approach, where every structure is learned from

data. The discussion and experimental results I present include contributions from my fel-

low lab mates and students, Stephanie Milani, Matthew Landen, Erebus Oh, Shane Parr,

Shawn Squire, and my advisor Marie desJardins.
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8.2 Approach

I consider a goal-based interpretation of tasks where a single MDP defines one specific

task, drawn from a distribution of MDPs (i.e., a family of related tasks). This task uni-

verse U is defined to encompass object classes, possible actions, physics governing how

state variables may interact and change, and conditional rules characterizing goal states.

An MDP may be sampled from this distribution, M ∼ U . Given the actions and physics

of U , specifying a starting state induces the specific T . The set of reachable states S fol-

lows directly by the transition rules of T . The R particular to this MDP may be derived

depending on termination conditions (e.g., for goal and failure states), and rules or predi-

cates may be defined to determine when reward should be affected (e.g., “apply negative

reward on a transition from a state back to itself”). Importantly, learning a task’s model

aids the transfer of behavior to related tasks in the same U [3].

8.2.1 Related Work

I now reintroduce MAXQ as discussed in Section 7.1.2.1 from the perspective of learning

models. The MAXQ hierarchical RL approach [34] leverages a task hierarchy, a graph

from a root goal to child subtasks, decomposing the complex value function of the broad

task into a set of smaller, more easily computable value functions, each with transitions

and rewards derived from the base MDP. R-MAXQ [69] is a model-based RL algorithm

that builds upon MAXQ. R-MAXQ learns partial models of each task in a given task

hierarchy, recursively computing and storing models from subtasks to propagate knowl-

edge of transition probabilities and rewards to the higher-level models. R-MAXQ applies
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R-MAX [22] to approximate the rewards and transitions of primitive actions. To deter-

mine the model dynamics of composite tasks, modified Bellman equations relating the

parent’s model to the models of children are applied, decomposing recursively to the base

actions approximated by R-MAX. After the knowledge of the ground MDP is propagated

up the task hierarchy, the agent can plan at an abstract level using a greedy policy. Af-

ter a bounded amount of exploration, the agent’s hierarchical model will converge to a

near-optimal solution. As with MAXQ, R-MAXQ achieves a recursively optimal pol-

icy, optimal at each level of the hierarchy assuming its children are optimal. By trading

optimality for near-optimal solutions, recursively optimal methods offering significantly

faster planning times; however, a poorly specified task hierarchy can result in suboptimal

or unsolvable plans.

8.2.2 Model-Based Reinforcement Learning

In my novel method, Planning with Abstract Learned Models (PALM), an agent uses an

AMDP hierarchy to plan a solution while learning the model of each task from experi-

ence. PALM simplifies the computationally intensive, “flat” planning problem in M by

treating each node in the hierarchy as its own decision (represented as an AMDP), and

then computing the AMDP task’s policy locally. Conceptually, PALM plans the solution

to a given task, selects a subtask, recurses, and continues this process successively until

reaching and executing a primitive action (causing the agent to make a “real” transition in

the ground MDP). It updates its task models based on the experiential data: the transitions

observed as it executes actions in the ground MDP.
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In PALM (Algorithm 4), planning and execution are interleaved and occur at mul-

tiple levels of abstraction. The inputs of PALM are the ground MDP M , an initial ground

state s0 ∈ S, and a hierarchy H of AMDPs, which can be expert-defined or learned

through an automated method like HA-Maker (Algorithm 5). Additionally, designers

must select one or more planning algorithms (e.g. VI) and an algorithm for model-

learning (e.g. R-MAX) to use in each AMDP.

In PALM, planning begins recursion on the root AMDP task. With each recursive

call to PALM, st is projected into the given AMDP’s state space by applying state ab-

straction, φ(st) → s̃t. PALM then computes a local policy π for the AMDP and selects

the next planned action, π(s̃t) → a. If that action is primitive (a ∈ A), executing it in

the base environment returns the next ground state, st+1; if it is a subtask, then it is an

AMDP linked to the current one in the hierarchy. On completion of the execution step

or recursive call, PALM abstracts the new ground state, s̃t+1, obtains the pseudo-reward

r for the abstract transition, and updates the current AMDP’s model (recomputing the

approximation of T̃ and R̃ based on the observed transition). In lines 18-21, the model-

learning algorithm in each AMDP explicitly handles success and failure separately. For

my implementation, in the case that s̃t is a goal or failure, r is overridden to apply the

maximum or minimum value, respectively.

8.2.2.1 Nonstationarity

An abstract model learning on an unconverged lower-level model is following a non-

stationary process. To avoid the effects of nonstationarity that would be introduced by
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Algorithm 4 Planning with Abstract Learned Models
1: function START(Hierarchy H , MDP M , state s0)
2: Initialize models for all AMDPs M̃i ∈ H
3: PALM(H , M , ROOT-INDEX(H), s0)
4: function PALM(H , M , AMDP index i, st)
5: 〈S̃, Ã, T̃ , R̃, γ, Ẽ , φ〉 ← M̃i ← NODE(H, i)
6: s̃t ← φ(st)
7: while s̃t /∈ Ẽ do
8: π ← PLAN(M̃i, s̃t)
9: a← π(s̃t)

10: if IS-PRIMITIVE(a) then
11: st+1 ←EXECUTE(M,a)
12: else
13: j ← CHILD(H, i, a)
14: st+1 ← PALM(H,M, j, st)
15: s̃t+1 ← φ(st+1)
16: r ← R̃(s̃t, a, s̃t+1)
17: UPDATE-MODEL(M̃i, s̃t, a, s̃t+1, r)
18: if TASK-COMPLETED(M̃i, s̃t+1) then
19: HANDLE-SUCCESS(M̃i, s̃t, a, s̃t+1, r)
20: if TASK-FAILED(M̃i, s̃t+1) then
21: HANDLE-FAILURE(M̃i, s̃t, a, s̃t+1, r)
22: t← t+ 1

23: return st

making abstract updates before their subtask models have converged, I employ an update

strategy based on the “knows-what-it-knows” (KWIK) framework. A KWIK algorithm

(e.g. R-MAX [91, 151]) reasons explicitly about its transitions as either known or un-

known. Although omitted from my pseudocode for succinctness, the recursive return step

of PALM includes a signal indicating the known/unknown status of the transition that just

occurred. This signal informs the parent task if it should ignore or process the transition

in UPDATE-MODEL. In effect, subtask models are cemented before their abstract, parent

models are learned. Experimentally without this update strategy, I found that PALM pro-

duces solutions swiftly while learning on nonstationary models, even exhibiting optimal
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behavior; however, the aforementioned strategy ensures abstractive optimality and that

PALM converges to a recursively optimal policy. All results reported in Section 8.4 fol-

low the procedure of learning lower task models first before beginning to make updates

to their parent AMDPs.

8.2.2.2 Complexity

I consider the complexity of each AMDP task individually. In the execution of PALM on

a given AMDP, computational complexity is dominated by the planning algorithm. In the

worst case, this planner is recomputed at each step. The sample complexity for an AMDP

task in general will be O(ρ), where ρ is the sample complexity of the model-learning

algorithm used; for R-MAX, ρ = |S|2|A|V 3
maxε

−3(1 − γ)−3 given M ’s maximum value

Vmax and the PAC-MDP parameter ε [89]. Thus, hierarchies of fewer nodes and shallower

depth are typically preferable in terms of sample complexity. Depending on the planning

algorithm and model-learning algorithm, it is possible to cache planned policies between

iterations, greatly ameliorating the computational cost of planning at each abstract step.

In my experiments, I omit caching when comparing PALM with R-MAXQ and enable it

for the PALM-only experiments.

8.2.2.3 Flexibility

PALM is agnostic to both the internal model-learning and planning algorithms (lines 8 and

17 of Algorithm 4, respectively). This property is one of PALM’s crucial benefits: ex-

perts can specify different algorithms according to different decision problems solved by
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Algorithm 5 Making a Hierarchy of AMDPs from Data
1: function HA-MAKER(Trajectories D, algorithm H)
2: G← H(D) . H constructs a MAXQ-style task graph
3: H ← ∅ . Initialize an empty graph of AMDPs
4: for subtask gi ∈ G do . Reverse topological order
5: 〈Ã, T̃ , R̃, γ, τ, χ, θ〉 ← gi . Unpack the subtask
6: φ← EXTRACT(τ , χ, θ)
7: S̃ ← ∅ . S̃ induced by φ, T̃ during execution
8: Replace gj ∈ Ã with the AMDP M̃j ∈ H
9: Ẽ ← {s | s ∈ S, τ(s) ∨ χ(s)}

10: M̃ ← 〈S̃, Ã, T̃ , R̃, γ, Ẽ , φ〉
11: H ← LINKNODE(H, i, M̃) . Link M̃ to its children, the AMDPs in H matching

the actions in Ã
12: return H

separate AMDP tasks. In my experiments, I have agents plan using either VI or bounded

real-time dynamic programming [105], and subsequently follow a greedy policy, while

handling the learning of models with R-MAX. I select VI and R-MAX to align my results

with R-MAXQ (which uses them), and to demonstrate the utility of PALM with a stock

approach under minimal assumptions. Other planners and model-based reinforcement

learners could be used without changes to PALM’s structure.

8.2.3 Hierarchy Learning

I introduce Making a Hierarchy of AMDPs from Data (HA-Maker), a direct procedure

for constructing an AMDP hierarchy from solution demonstrations by leveraging existing

hierarchy-building algorithms that yield task graphs. Algorithm 5 outlines HA-Maker’s

pseudocode. The first input is a set of trajectories, D, demonstrating solutions to various

tasks drawn from a domain distribution. I assume each trajectory is collected on M ∼ U ,

an MDP sampled from the universe of possible tasks in the given domain. The second

input is a hierarchy-learning algorithm, H, that yields a rooted, directed graph of tasks
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H(D) → G, such that H learns the subtask dependencies, terminal conditions, and (op-

tionally) the state abstraction. HA-Maker constructs AMDPs from tasks in the learned

graph through a process that assembles each component in a reverse topological ordering,

to build primitive AMDP tasks first, ending with the root AMDP. Notably, each subtask

g ∈ G consists of 〈Ã, T̃ , R̃, γ, τ, χ, θ〉, which are, respectively, the task’s own action set

(either child subtasks or primitive actions), the transition probabilities for that task, the

pseudo-reward function, the discount factor, the goal termination predicate, an optional

failure termination predicate, and an optional set of factored state parameters based on

OO-MDP classes. As in my experiments, T̃ and R̃ may be unknown or could be initial-

ized based on prior knowledge; θ may be empty.

HA-Maker then initializes an empty graph of AMDPs, H . Starting from the child

tasks and proceeding in reverse topological order, HA-Maker takes the following steps for

each subtask inH . First, it extracts the state abstraction φ from the terminal predicates (τ ,

χ) and object parameters (θ) based on the attributes needed for objects present in them.

Using HierGen (see Section 8.7) as H, θ contains only the objects causally relevant to

the task, both τ and χ identify the factors needed to reason about goal and failure states,

and thus the resulting φ abstracts away features not needed. For other H algorithms, if

they do not afford a means to yield relevant state factors, then θ may simply contain

all objects and thus EXTRACT will return all state factors (effectively, declining to use

state abstraction). The set of abstract states, S̃, for the subtask is initialized to ∅ because

the states are not known beforehand. Reachable abstract states are induced implicitly

by φ and T̃ during the model-learning of PALM on a given ground MDP. Second, any

child subtask gj ∈ Ã is replaced with the corresponding AMDP M̃j ∈ H, and terminal
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Taxi Dimensions Transitions Fickle

Small 1x5 Deterministic No
Classic 5x5 Stochastic No

Classic Fickle 5x5 Stochastic Yes
Large 20x20 Deterministic No

Cleanup Dimensions Blocks Rooms

Medium 7x5 1 3
Large 7x7 1 3
Small 5x5 2 2

Table 8.1: Domain variants used in the PALM experiments.

state membership is determined by τ and χ. Third, the AMDP M̃i is initialized with

the standard tuple components. Finally, M̃i is added to the hierarchy by linking it to its

children, the AMDPs in Ãi.

8.3 Experimental Methodology

I compare the performance of a PALM model-learning agent to the most analogous ex-

isting model-based hierarchical method, R-MAXQ. I also demonstrate the value of HA-

Maker by comparing the performance of PALM with HA-Maker-generated hierarchies

against PALM with expert-defined hierarchies. For HA-Maker, I select HierGen because

it follows a principled causal approach to generate both task linkages and their concise

state abstractions, where only the variables that are causally relevant are preserved [107].

Each PALM experiment consists of 20 independent trials of 300 episodes per trial (or

otherwise specified), each with 105 maximum steps, and reward functions scaled to have

1.0 as the maximum goal reward. VI and R-MAX serve as the planner for PLAN and

model-based reinforcement learner for UPDATE-MODEL (lines 8 and 17 of Algorithm 4).
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(a) PALM-ET, the classic expert Taxi hierarchy. (b) PALM-HT, generated by HA-Maker,
learned via HierGen [107]

Figure 8.2: AMDP hierarchies for the Taxi domain. Edge labels specify the parameters
passed from parent to child.

Additionally, for some experiments I include a baseline by running Q-learning (QL), a flat

reinforcement learning algorithm [167], to establish the relative value of having a hierar-

chy and indicate the difficulty of learning from scratch. As a model-free algorithm, QL

does not maintain approximations of T or R and is thus unable to plan over its actions.

8.3.1 Domains

The Taxi domain [34] is a discrete environment with a taxi agent, passengers, depot lo-

cations, and walls positioned on a grid-world. The agent must deliver each passenger to

its goal depot. The action space contains four navigational actions, north, south, east,

west, as well as two passenger-parameterized ones: “pickup” for collecting a co-located

passenger, and “dropoff” for depositing a held passenger at a depot location. Movement

can be stochastic, correctly transitioning with a probability of 0.80 (else moving in a per-

pendicular direction). The fickle variant permits any passenger to change their desired

destination stochastically on a movement action with probability 0.05.

I use the Cleanup domain as described in Chapter 5, but with different configu-
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rations of rooms and blocks. I emphasize that Cleanup tasks appear deceptively simple:

they present a combinatorial explosion of state space as more blocks and rooms are added,

and the transition dynamics present many bottleneck “corner cases” in state space (when

blocks are stuck in corners) that require a precise sequence of actions to exit. For exam-

ple, a 7x7 three-room two-block task has approximately 18000 states; with four blocks,

the MDP has several million states. The Cleanup domain makes use of a sparse, flat 0/1

reward structure (zero until a goal state is reached). I standardize this goal-based variant

of Cleanup as follows: all blocks shaped like bags or backpacks must be placed in a room

matching their color, while other blocks are irrelevant and serve only as obstacles.

8.3.2 Hierarchies

I describe the hierarchies used in this paper:

PALM-ET (Figure 8.2a) is based on the classic MAXQ task hierarchy [34]. The

GET and PUT tasks of PALM-ET are parameterized over the passengers, abstracting away

the Cartesian coordinates of the taxi, passengers, and depot locations.

PALM-HT (Figure 8.2b) is the AMDP hierarchy constructed by HA-Maker using

HierGen to learn a hierarchy for Taxi from 30 solution trajectories. Its structure matches

the one reported in a previous work [107]. Notably, this hierarchy possesses a ROOT

task with the primitive “putdown” action, an INTAXI task (complete when the passenger

is in the taxi), and a NAVIGATETO task (complete when the taxi is at the parameterized

passenger’s goal).

PALM-EC (Figure 8.3a), the expert hierarchy for Cleanup, has its root AMDP plan
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in terms of moving the agent to the block (A2B) and moving a block to a room (B2R).

As an action in ROOT, B2R can only be initiated when the agent is adjacent to a block;

similarly, A2B terminates when next to a block. A ROOT policy would thus generally

require A2B then B2R for each block that needs to be moved

PALM-HC (Figure 8.3b), the learned Cleanup hierarchy, degenerates into a flat

hierarchy without subtasks beyond ROOT, which contains only the primitive actions. I

find this negative result surprising, arising from my use of the hierarchy learner HierGen

as H in HA-Maker, and discuss it further in Section 8.5.

PALM-AC (Figure 8.3c), an amended, second-draft expert hierarchy for Cleanup

is informed by PALM-HC. Each primitive action is wrapped in an AMDP task parameter-

ized by the x-y coordinates of the destination relative to the agent position. Additionally,

I define four LOOK tasks (one for each movement primitive) that permit the agent to face

a block before pulling it. Combining these parameterized, shielded primitive actions with

state abstraction over irrelevant variables means that a PALM agent will never plan an

action that is illegal or results in a self-transition.

8.4 Results

I examine the utility of HA-Maker in comparison with expert-specified hierarchies, and

I consider the performance of PALM in terms of the cumulative steps taken and reward

acquired across episodes. The figures are shown with the 95% confidence region shaded.
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(a) PALM-EC, the first expert Cleanup hierar-
chy.

(b) PALM-HC, generated by HA-Maker using
HierGen.

(c) PALM-AC, an amended expert hierarchy, in-
formed by PALM-HC.

Figure 8.3: Hierarchies created for the Cleanup domain.

8.4.1 PALM & R-MAXQ

Figure 8.4 compares the PALM methods with R-MAXQ. In the Small Taxi domain, with

deterministic transitions, R-MAXQ exceeds PALM when using the same hierarchical

structure (PALM-ET). Consider results on the classic Taxi problem in Figure 8.4b. One

may observe a different asymptotic relationship among R-MAXQ and the PALM methods

under these conditions, such that R-MAXQ struggles to compute the recursive models of

its subtasks even on this domain, with only 100 states. While I anticipate R-MAXQ ul-

timately approximates correct models to plan more efficiently in episodes beyond those

shown, it will not surmount the results of PALM-ET and PALM-HT, both of which rapidly

converge to the optimal policy.
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(a) Small, deterministic Taxi. (b) Classic Taxi.

Figure 8.4: R-MAXQ, PALM-ET, and PALM-HT on Small Taxi and Classic Taxi.
PALM-HT achieves greater cumulative reward for both domains.

8.4.2 PALM with Expert & PALM with HA-Maker

It is observed that, for the fairly simple domains in Figure 8.4, PALM most directly learns

the models for the hierarchy built by HA-Maker (PALM-HT). Regarding Figure 8.5,

PALM-HT also succeeds significantly over PALM-ET in the version of the Classic Fickle

domain with one passenger. However, PALM-ET achieves greater cumulative reward in

the successive experiments than PALM-HT, with the latter faltering to increasingly greater

extents as more passengers are added. I elaborate on this trend in Section 8.5. Figure 8.5d

exhibits the case of a transferred model, where a converged model for the NAVIGATE

AMDP is given to a PALM-ET agent and compared against PALM-HT.

For the Cleanup domain, with results in Figure 8.6, it can be observed that the rel-

ative changes in cumulative steps rather than reward (since each complete episode yields

a reward of exactly 1.0) as complexity is varied among tasks. Specifically, I consider

when there are more rooms, Figures 8.6a and 8.6b, or fewer rooms but more blocks, Fig-

ures 8.6c and 8.6d. The asymptotic relations among the PALM methods hold across all
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(a) Classic, 1 fickle passenger. (b) Classic, 2 fickle passengers.

(c) Classic, 4 fickle passengers. (d) Large, 1 passenger.

Figure 8.5: Cumulative reward for the Taxi domain. In 8.5d, I provide a PALM-ET agent
with a converged model for NAVIGATE to show the benefit of transferring learned models.

variant tasks: PALM-EC requires the most cumulative steps, while PALM-HC (PALM

with the hierarchy constructed by HA-Maker) is in the middle, and the redesigned expert

PALM-AC solves domains most readily. Both PALM-HC and PALM-AC outperform QL,

which is learning directly rather than planning over learned models. In comparison, the

initial expert hierarchy seems less effective, taking statistically significantly more steps to

learn than QL, despite having fewer models than PALM-AC.
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(a) Medium, 1 block, 3 rooms. (b) Large, 1 block, 3 rooms.

(c) Small, 2 blocks (one irrelevant, one target),
2 rooms.

(d) Small, 2 blocks (both targets), 2 rooms.

Figure 8.6: Cumulative steps for the Cleanup domain. Note: fewer steps are preferable
(achieving the goal reward faster).

8.5 Discussion

In brief, the value of PALM over R-MAXQ is its facility for scaling to increasingly com-

plex domains while maintaining the ability to transfer its models. For HA-Maker, I find it

can construct hierarchies that, in combination with PALM, outperform expert hierarchies.

These learned hierarchies of AMDPs, however, come with the caveat that their structure

may lead PALM to encounter difficulties and struggle in learning abstract models as task

complexity increases.
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8.5.1 PALM & R-MAXQ

The advantages of PALM relative to R-MAXQ are made evident by the results on the Taxi

domain with respect to number of cumulative reward and scalability: as stochasticity and

more states are introduced, R-MAXQ requires excessive computation in comparison to

PALM. Assuming the same planning scheme is deployed in PALM and R-MAXQ (I use

in both VI), PALM requires fewer Bellman updates for each task node in the hierarchy.

This advantage arises because PALM’s PLAN step (line 8 in Algorithm 4) needs only con-

sider local transitions across the (abstract) state space of the AMDP for its task, whereas

the analogous COMPUTE-POLICY step in R-MAXQ (Algorithm 2, [69]), must create a

planning envelope of possible future states after each execution, recomputing the models

of all children down to the primitive actions. Since R-MAXQ must calculate transition

probabilities and rewards recursively down through all subtask models each time it plans

for a given task, an increase in state space amplifies the effects of stochasticity across lev-

els of the hierarchy. For PALM, since each model is computed independently, the effects

of stochasticity are limited. In effect, because the AMDP framework treats each subtask

as its own local decision problem, PALM can learn the value functions of these tasks in a

more focused manner.

Exploration of R-MAXQ and PALM is also fundamentally different. While R-

MAXQ is learning its models, the exploration guided by R-MAX is affected by the need

to compute down to the primitive level; for PALM, exploration is handled irrespective of

subtasks, because each AMDP that is being modeled has its own R-MAX. Though reason-

able in such small domains, my cursory investigation of R-MAXQ on much larger, more
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complex MDPs indicates that the intertwined nature of R-MAXQ’s computation serves to

exacerbate the scalability issue, whereas PALM’s encapsulation of models inhibits such

problems. I also note that my implementation of R-MAXQ followed the original speci-

fication [69], and while alternative design choices may help alleviate scaling issues, the

structure of PALM’s pseudocode roughly parallels that of R-MAXQ.

8.5.2 Independent Models

Perhaps the biggest difference between PALM and R-MAXQ, as well as MAXQ and op-

tions more generally, is that PALM yields completely independent models. Specifically,

each subtask is represented as an AMDP that, when planning, is functionally just an MDP.

This notion of treating abstract tasks as their own decision problems is one of the core in-

sights from prior work on planning with AMDPs [55]. That is, in learning an abstract

model for an AMDP, PALM is not creating interdependent “puzzle piece” forms of tem-

poral abstraction that must link together precisely. Rather, PALM performs model-based

reinforcement learning directly, just on abstract problems, where the result is not a static

policy or fragment of a value function, but an encapsulated MDP in its own right. Thus

with AMDPs, PALM can learn one MDP and transfer sufficiently abstract models to new,

related tasks pulled from the same universe, greatly accelerating overall performance.

I include Figure 8.5d as an example of transfer, and refer to standard metrics for

transfer in reinforcement learning [154]. To transfer in a model, it is first necessary to

obtain either an expert-defined one or a learned one acquired via training on an MDP

sampled from the same universe. In this case, tasks are drawn from the Large Taxi do-
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main, for which the location of depots remains constant but the position and destination

of passengers varies. Transfer is valid because the state abstraction of NAVIGATE is suf-

ficient: it abstracts away passengers, so it is directly valid in any task once learned. This

kind of encapsulated transfer is impossible with R-MAXQ because, even after it learns an

abstract model, those transition probabilities and reward function depend ultimately on

the R-MAX approximation on ground states specific to the given MDP. Provided with the

converged model, the “PALM-ET given Nav” agent achieves an immediate and statisti-

cally significant jumpstart over the algorithm with the same hierarchy, PALM-ET, as well

as having a shorter time to convergence and greater total reward. One can see this per-

formance because NAVIGATE dominates the sample complexity, so possessing a correct

model alleviates the burden to explore at that level, allowing the agent to more rapidly

advance to learning GET and PUT. While introducing PALM here, I anticipate exploring

the benefits and potential cases of transferring learned abstract models more extensively

in future work, such as with value function approximation as discussed in Section 8.6.

8.5.3 Expert & HA-Maker Hierarchies

My main finding in pairing HA-Maker and PALM is that not only is it possible to learn

every piece required for planning with hierarchies of abstract Markov decision problems

entirely from data, but such hierarchies can rival the efficiency of those engineered by

human designers. Figures 8.4b and 8.5a evince this result most clearly, where PALM-HT

attains roughly the same asymptotic performance as PALM-ET in only a fraction of the

steps required (that is, with less negative reward). The solution trajectories HA-Maker
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requires can be gathered from random walks in instances of the ground domain, and

in leveraging any task graph learner, HA-Maker can build and configure all the AMDPs

needed for hierarchical planning, including state abstraction and a factored pseudo-reward

function. These results likewise indicate PALM can take learned hierarchies and indepen-

dently learn all of the remaining components of the AMDPs. Effectively, HA-Maker and

PALM make it possible to create everything needed for hierarchical planning via sampled

experiences without expert knowledge.

I uncover a problem of using learned hierarchies that is best illustrated by Fig-

ures 8.5b and 8.5c. In these tasks, the number of passengers is increased beyond the

original number of passengers (one) in the trajectories for which PALM-HT was created.

Where PALM-ET is robust to the added challenge, PALM-HT exhibits severely degraded

performance. As with R-MAXQ in Figure 8.4b, I know that PALM-HT will eventually

learn its models and be able to produce an optimal policy. But, the presence of fickle

passengers causes PALM-HT to vacillate more heavily, due to its task parameterization.

It must reason about (and explore) the combinations of moving among all passengers

and locations in its ROOT task. Lacking a model for a PUT-style subtask, solving the

PALM-HC ROOT requires handling all the ways held passengers could be “Putdown” at

locations. Thus the utility of PALM and HA-Maker may be greatly lessened when at-

tempting to transfer the hierarchy to increasing degrees of complexity in the universe of

tasks to which they are applied.

For Cleanup, where I supply trajectories sourced from a variety of Cleanup vari-

ants (Table 8.1), the hierarchy learned by HierGen collapses all primitives into one task.

Specifically, with any amount of variety in the state space of tasks comprising the so-
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lution trajectories (with all tasks in a similar universe), HierGen is not able to parse its

causally-annotated subsequences into a precedence graph of more than one node. In

essence, this finding emphasizes the immense challenge of generalization that still en-

dures for hierarchy-learning algorithms. Thus, for PALM-HC, HA-Maker only assembled

one AMDP. Its representation is roughly equivalent to a flat model-based learner (though

it is equipped with learned state abstraction, goal, and failure conditions). Despite degen-

erating to a single-task hierarchy, PALM-HC’s performance in the Cleanup experiments

does demonstrate that the union of hierarchy-learning and model-learning algorithms can

produce valid, efficient solutions. All PALM methods in Figure 8.6 arrive at the optimal

policy, which QL does not (yet) find in 300 episodes. In each case PALM-HC converges

faster than PALM-EC, in many fewer steps and episodes. The effectiveness of PALM-HC

over PALM-EC indicates it can leverage the mechanisms of AMDPs to reach the same

optimal behavior through more efficient sampling. In contrast, while PALM-EC takes

significantly more steps to converge, it is also produces a potentially more useful set of

models, transferable to related tasks where those of less complex hierarchies are not.

The final hierarchy, PALM-AC, is created based on my observations of the first two;

the fact this second iteration expert hierarchy performs better after observing a learned

one suggests the value of cooperating with learned methods. Thus, an insight from this

work is that enhancing expertise with knowledge gleaned from autonomously generated

structures can lead to an approach that surpasses either of those on their own. I hope in

future work to develop more sophisticated hierarchy-learning methods that can automate

these insights.
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8.6 Future Work

In the process of creating a comprehensive framework capable of dually learning hi-

erarchies and their models, I encounter several challenges, sometimes unexpected and

counter-intuitive. Above all, it is challenging to create a valid hierarchy - either by hand

or learned from data. For instance, most hierarchical methods consider segregating ac-

tions; HierGen relies on the ability to parse actions based on their causal effects. Cleanup

is a particularly challenging domain for this approach because “problem” states continu-

ally arise that require all five primitive actions. For example, when a block is in a corner,

the agent must enter a state facing towards the block, pull to get it away from the wall,

then navigate behind it. It is difficult to design subtasks that do not encounter such cor-

ner cases at some point. Candidate hierarchies may also inadvertently specify impossible

subtasks when grounded to a new domain. Consider the B2R task of PALM-EC, with

the goal of moving a block to a room. Grounded to a cross-shaped Cleanup state, where

there is a single-cell room in the center, it is not possible to perform B2R to move a block

from one junction of the cross to a perpendicular arm. Thus, future work must address

the problems of recognizing when to replan, not being fully committed to a task (by ter-

minating probabilistically), and both growing and pruning candidate tasks while learning

models.

An advantage of the modularity afforded by my HA-Maker and PALM approach

is the ability to use representational tools such as value function approximation for nav-

igational or perceptual tasks in a low-level continuous state space, while using tabular,

dynamic programming in higher-level AMDPs. Moreover, an abstract hierarchy could
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be trained on a wholly symbolic hierarchy, with a discrete navigation AMDP, and then

transferred over to a continuous domain, where only navigation needs to be relearned.

8.7 Related Work

Prior efforts in learning hierarchical structures of tasks include several approaches: dis-

covering transferable option policies directly [23, 159]; learning high-level skills and ab-

stract actions from demonstrations [82, 83]; and, causally annotated approaches that pro-

duce MAXQ-style task graphs. For the discovery of transferable options, policies are

often broken down into sub-components that are reusable in novel domains and environ-

ments. In contrast, skill discovery centers more on the representational question, with

the aim to learn high-level symbols that induce build minimal, abstracted MDPs repre-

senting options that chain from one to another. In the chaining of skills, the complexity

of learning the global task’s value function is circumvented by needing only to learn the

smaller value functions of chained skills. The latter thread of research stemming from

MAXQ includes VISA [70, 165], in which the causal effects of actions on state factors

are modeled as dynamic Bayesian networks. In particular, each action receives its own

network that captures the probabilistic change from a source state to successor state (on

one time step). In the network, each state factor is a random variable, with edges indicat-

ing a temporal dependence among factors from one state to the next, capturing the causal

connection of factors and the action to represent how they evolve probabilistically over

time. HI-MAT [108] expands on this idea further by constructing a hierarchy of tasks

based on the casual annotation of a single successful trajectory through state space. Its
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extension, HierGen [107], outlines a more general framework that constructs a hierar-

chy from many trajectories. This latter group of techniques most closely aligns with the

AMDP framework, as their task hierarchies can be converted directly to hierarchies of

AMDPs, given an explicit set of terminal goal and failure conditions.

8.8 Conclusion

PALM demonstrates the viability of a model-based approach on the AMDP framework for

hierarchical planning, where entirely abstract models are learned from experience gained

and propagated across the abstract level itself. With HA-Maker, I show how to deploy

existing structure-learning methods to learn task hierarchies that can be converted to an

AMDP hierarchy, yielding a compact and parameterized representation. With PALM, an

agent can approximate and plan over the models that best suit each task in a hierarchy

of decision problems. PALM maintains the benefits of planning with AMDPs, such as

increased scalability and transferability of models. United, they grant a unique capacity

to learn, from sampled experiences, every component of tasks and their models needed

for hierarchical model-based reinforcement learning, all without requiring any human en-

gineering of reward structure or expert-defined transition dynamics. Thus, planning with

abstract, learned models provides a complete framework for learning, bottom-up from

data, the structures necessary to perform top-down, hierarchical probabilistic planning.
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Chapter 9: Conclusion

My aim has been to create more intelligent agents, capable of generalizing their experi-

ence beyond the narrow set of conditions upon which they were trained. With anomaly

reasoning through concept formation, I outlined how uncertain and novel objects in an

agent’s environment may be interpreted. By leveraging the theory of formal concept

analysis, I demonstrated how decision-making algorithms can be made concept-aware to

better adapt to anomalies, generalizing by transferring behavior for previously learned

concepts in new circumstances. To extend agents’ reasoning over longer time horizons, I

expanded the field of hierarchical reinforcement learning with new methods for bottom-up

learning of abstract subtasks. Taking the converse paradigm, I discussed structures for ef-

ficient top-down hierarchical planning. Synthesizing these forms of abstraction together,

I developed and analyzed a novel framework for integrated planning and execution, where

agents themselves learn the tools they need to create state and temporal abstractions that

enable transfer and generalization.

9.1 Summary of Contributions

This dissertation covered an array of contributions in achieving more general, adaptable

abstract decision making.
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I began by discussing the notions of concepts and habits as abstractions of states and

actions, respectively. I then outlined the problem of anomaly reasoning, motivating the

use of formal concept analysis to generate an explicit, hierarchical conceptual structure

of knowledge. From this, I contributed a theoretical framework for anomaly reason-

ing, decomposed into the processes of identification, interpretation, and adaptation. I

formulated interpretation as a classification problem, including an interpretation proto-

type featuring a lattice abstraction procedure. In the course of an empirical analysis,

I also produced a novel domain, the NetHack Monster data set. This data is extracted

and cleaned from NetHack’s game files, in a format suitable for supervised learning, to

be made available for other researchers.

In terms of concepts, I developed concept-aware feature extraction (CAFE) to

create formal concept-based usable in function approximation and state abstraction. An

earlier version of CAFE is published in Winder and desJardins (2018) [170]. I articulated

the framing of CAFE in both a contextual bandits with concepts (CBC) and a concept-

aware reinforcement learning (CARL) setting. The analyses of CBC and CARL, with

the updated definition of CAFE, are in preparation for submission as conference paper. I

also defined the concept meta-graph visualization; the accompanying software to render

it will be available alongside the CBC domains upon their release.

From the perspective of habits as subtasks, I surveyed a history of bottom-up learn-

ing and top-down planning methods. In Chapters 6 and 7, I discussed my collaborations

to make more adaptable algorithms for learning and planning with temporal abstraction.

In addition to substantial writing, my contributions to these projects include the creation

and empirical assessment of a more sample-efficient approach to option learning, the
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expected-length model (ELM), and the analysis of our novel technique for transferring

abstract policies, portable option discovery (POD). A paper on the former will be pub-

lished this year [4], while the discussion in this thesis of the latter is based upon Topin

et al. [159]. I then provided an overview of the context for top-down planning with ab-

stract Markov decision processes (AMDPs), where each separate subtask is a decision

problem unto itself. For this work, I primarily contributed to the algorithmic design and

the generation of experimental results; our main work is published in Gopalan et al. [55].

Bringing together these top-down and bottom-up paradigms, in Chapter 9, I articulated

a new model-based reinforcement learning algorithm, capable of learning hierarchical

structure and then individual AMDP subtask models: planning with abstract, learned

models (PALM). This work is based on an simpler approach published in a workshop

paper [171]; I am preparing a more extensive paper for submission to a conference later

this year.

For my implementations of algorithms and experiments, I built upon the Brown-

UMBC Reinforcement Learning and Planning (BURLAP 3.0) library [97].1 The substan-

tial novel additions and changes to the original BURLAP source code warranted a forking

of the project into five separate packages:

• HessianJ: the main fork of BURLAP, containing POD, a suite of new domains, and

revised source code fixing several major bugs.

• FleeceJ: general contextual bandits domains and the LinUCB variants.

• CanvasJ: algorithms and data structures for Formal Concept Analysis, CAFE,

1https://github.com/jmacglashan/burlap
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CBC, CARL, and the concept meta-graph visualizer.

• LampasJ: abstract Markov decision process data structures, ELM, and PALM.

• TulleJ: standardized simulation code for running experiments loaded from config-

uration files.

These repositories collectively form the FabricRL project, a branch of and successor to

BURLAP.

Due to the size of FabricRL and its importance to the results I present in this thesis, I

must reiterate my thanks in particular to James MacGlashan, the main author of BURLAP,

for his great efforts on that library, which helped to make mine possible. Likewise, I

wish to thank Nakul Gopalan and Matthew Landen, both of whom authored significant

pieces of the AMDP and PALM architectures, and related code, upon which the versions

included in FabricRL are based.

9.2 Future Work

I have investigated two parallel threads of research in this dissertation, state abstraction

and temporal abstraction. In demonstrating how both enable transfer and generalization

of artificially intelligent agents, I have laid out a plan for future work to build upon, and

ultimately, synthesize them more fully. One way to achieve this goal would be to unite

a CAFE-like concept-forming, anomaly-reasoning framework with a PALM-like bottom-

up learning of top-down structures for planning. With the remaining space, I sketch an

outline of possible future directions to explore.

236



Larger, More Complex Domains

NetHack is a single-player video game in which the player must collect items and defeat

enemies to escape from a multi-level dungeon. The immense variety of object types and

possible actions makes transferring knowledge and adapting to novelty necessary.

An agent playing NetHack often encounters new objects functionally similar to

learned classes of objects (but differing by some specific attributes). In combining CAFE

with a model-based hierarchical RL algorithm like PALM, transferring concepts would

facilitate an agent’s ability to respond to unseen types of items, furniture, and enemies,

such that subtasks could be parameterized by these abstract features.

In applying concept formation to domains like NetHack with essentially open-

ended state spaces, a central challenge that consider is the ever-increasing space con-

cepts. Thus, I expect heuristic methods for pruning the concepts to consider, would be

especially useful. One might imagine learning a scoring function based on minimum

description length (MDL) that finds the optimal compression of a given (A)MDP state

space, characterized by a concept meta-graph of only the most relevant concepts.

In partially observable environments like NetHack, agents have limited access to

the underlying state, leading to uncertainty in decision making. Often, they have only a

set of observations and must use these to update their beliefs about the state they currently

occupy. Since CAFE maintains a general notion of its input, concepts can just as easily

be derived from belief states. (CAFE makes does not require access to a state’s full set

of features.) Thus, CAFE’s facility for anomaly reasoning makes it directly applicable to

the central challenge of POMDPs. Learning transfer in POMDPs is the same as in the
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fully observable case, preserving known concepts and their weight parameters θ from a

source POMDP to a target POMDP. In transferring from domains with more information

to ones with less (such as training on a fully observable MDP and deploying on a related

POMDP), concepts could allow inference of the latent, unobserved features.

Concepts could form the basis of memory that is used to persist context across time

in POMDPs. Concepts will be stored in a read-write format, similar to neural maps but

more directly analogous to sparse distributed memories, where their binary representa-

tions serve as addresses into memory space. Given a POMDP state, an agent’s observation

maps to a behavior by extracting concepts via CAFE, indexing those into memory, and

interpreting the stored knowledge of good and bad actions based on the co-occurrence of

those concepts. Crucially, where the existing memory techniques rely solely on the literal,

grounded features of the state, my proposed concept-based memory differs by leveraging

FCA to automatically generate abstract features (super-concepts) and their partial order-

ing (the concept lattice), recording and transferring knowledge more generally.

Concept-Enabled AMDPs

A direct extension of both CAFE and AMDP hierarchies would be to unite them under the

aegis of concept-enabled AMDPs. Both the generation of a hierarchy and the subsequent

learning of the AMDP models could leverage CAFE, determining subtask parameters and

relevant features. In terms of learning a hierarchy itself, an agent could be presented with

a curriculum of increasingly complex, related tasks and learn concept-based subtasks in-

crementally to then combine into a task hierarchy. Concept-based task descriptors would
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describe abstractions over actions, generating specific subtasks based on what grounded

concepts exist that can satisfy its parameters. With the example parameterized subtask

described by the concept of “a key matching a door,” a concept-enabled AMDP would

be proposed for each combination of key and door, allowing the agent to reason directly

over the objects relevant to the abstract goal of unlocking doors. Furthermore, conceptu-

ally and functionally similar objects in a state could be aggregated into a compositional

object. A hierarchy of concept-enabled AMDPs could then plan top-down over the cre-

ation of these conceptual, composite objects, to build complex structures. Concepts could

be used to describe the template (constraints and relations) that such component objects

must satisfy to be combined into a more abstract compositional object like a house. An

agent could plan over wall-building subtasks, using concept-parameterized task descrip-

tors to arrange blocks into walls that satisfy the concept of a room. Concepts, therefore,

could have a multifaceted function, as mechanisms for abstractions of states, actions, and

goals. Concept-based abstractions will be compared to existing methods such as hierar-

chies of AMDPs and state aggregation as used in MAXQ.
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[141] Özgür Şimşek and A. Barto. Betweenness centrality as a basis for forming skills.
Technical Report TR-2007-26, University of Massachusetts Department of Com-
puter Science, 2007.
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