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Abstract
In this paper we describe a multilingual
grounded language learning system adapted
from an English-only system. This system
learns the meaning of words used in crowd-
sourced descriptions by grounding them in the
physical representations of the objects they are
describing. Our work presents a framework
to compare the performance of the system
when applied to a new language and to identify
modifications necessary to attain equal perfor-
mance, with the goal of enhancing the ability
of robots to learn language from a more di-
verse range of people. We then demonstrate
this system with Spanish, through first ana-
lyzing the performance of translated Spanish,
and then extending this analysis to a new cor-
pus of crowd-sourced Spanish language data.
We find that with small modifications, the sys-
tem is able to learn color, object, and shape
words with comparable performance between
languages.

1 Introduction

With widespread use of products like Roombas,
Alexa, and drones, robots are becoming common-
place in the homes of people. We can see a fu-
ture where robots are integrated into homes to pro-
vide assistance in many ways. This could be es-
pecially beneficial to elders and people with dis-
abilities, where having someone to help with basic
tasks could be what allows them to live indepen-
dently (Broekens et al., 2009). Natural language is
an intuitive way for human users to communicate
with robotic assistants (Matuszek et al., 2012a).
Grounded Language Acquisition is the concept of
learning language by tying natural language inputs
to concrete things one can perceive. This field
of study looks to train language and perceptual
skills simultaneously in order to gain a better un-
derstanding of both (Mooney, 2008). Work in this
field is critical for building robots that can learn

about their environments from the people around
them.

For such a system to truly be useful for the
average user, it is not enough to merely train a
robot how to recognize everyday objects and ac-
tions in a lab. Much like toddlers who grow up in
a family and surrounding culture, a service robot
should be ideally able to learn the acronyms, nick-
names, and other informal language that happens
naturally in human interaction. It logically fol-
lows that a truly well-designed system should not
only be able to handle vocabulary differences be-
tween users but also users that speak different lan-
guages. There are thousands of official languages
spoken around the world, and many more dialects.
In the United States alone, around 21 percent of
residents speak a non-English language as their
primary language at home (United States Cen-
sus Bureau, US Department of Commerce, 2017).
Grounded Language Acquisition takes many of its
roots from Natural Language Processing, which
in the past has had an unfortunate habit of focus-
ing on English-centric methods. This often leads
to systems that perform very well in English and
“well enough” in other languages.

In this paper, we take an existing grounded lan-
guage acquisition system (Matuszek et al., 2012b;
Pillai and Matuszek, 2018) designed for grounding
English language data and examine what adapta-
tions are necessary for it to perform equally well
for Spanish. We explore the extent to which ma-
chine translated data can assist in identifying lin-
guistic differences that can impact system perfor-
mance. We then collect a new comparable corpora
of crowd-sourced Spanish language data and eval-
uate it on the system with and without our pro-
posed modifications.



2 Previous Work

In this section, we describe relevant previous
works in grounded language acquisition and mul-
tilingual natural language processing. While there
has been past work to apply grounded language
learning systems to multiple languages (Chen
et al., 2010; Alomari et al., 2017) to our knowl-
edge there have been few efforts in the space of
non-English grounded language learning where
comprehensive analysis was done to diagnose dif-
ferences in performance between languages and
work to mitigate these differences.

2.1 Grounded Language Acquisition

Language grounding can be done in many ways.
There is a significant community within computer
vision that works on object recognition with the
help of captions (Krishna et al., 2017; Gao et al.,
2015). These efforts ground objects found in im-
ages with words and relations stated in the cap-
tions. A multilingual example of this by Gella
et al. (2017), used images as pivots between En-
glish and German image descriptions. This paper
has a similar task of mapping language to images,
but does so on a token level, and does not attempt
to combine information between the Spanish and
English corpora. In addition, the image data we
are using includes depth information, as we are
simulating the visual percepts of a robot. It must
be noted that this differs from other works that
use additional products of robotic percepts like
video data, eye tracking, and other forms of ges-
ture recognition (Chen et al., 2010; Alomari et al.,
2017; Kollar et al., 2014; Yu and Ballard, 2004).
In the robotics space, many works tie language
grounding to enable actions like pathfinding (Ma-
tuszek et al., 2012a), household tasks (Alomari
et al., 2017), and building (Brawer et al., 2018).
While performing practical tasks is the eventual
goal of our grounded language system, the current
system focuses on the first step: building repre-
sentations of objects and how they are described
(nouns and adjectives).

There are a few examples of language ground-
ing in multiple languages (Chen et al., 2010; Alo-
mari et al., 2017). Several works tested their sys-
tem in a language besides English and presented
the results for both. While this showed that their
systems could handle multiple languages, none
provided an in-depth analysis into the differences
in performance for their systems, or extrapolated

past the two languages. Our work seeks to ex-
amine and identify causes of differences in perfor-
mance. While our current work only displays this
system with Spanish, we plan to extend our frame-
work to additional languages in the near future.

2.2 Multilingual Natural Language
Processing

There is a strong multilingual community in the
broader field of NLP working in many different
aspects, such as machine translation (Wu et al.,
2016) or multilingual question answering (Gao
et al., 2015). Some works dive deep into specific
language pairs to evaluate how differences be-
tween the languages complicate translation (Alas-
mari et al., 2016; Gupta and Shrivastava, 2016;
Ghasemi and Hashemian, 2016). Several work
with Spanish and English specifically (Le Roux
et al., 2012; Pla and Hurtado, 2014). Analyses
such as these helped to shape our analysis when
comparing the English and Spanish data perfor-
mance, and enabled us to predict points where lin-
guistic differences could impact performance.

There are quite a few examples in literature of
taking a system designed for English and adapt-
ing it for multilingual use (Daiber et al., 2013; Ga-
mon et al., 1997; Macdonald et al., 2005; Poesio
et al., 2010; Jauhar et al., 2018). Sometimes this
involves manually recreating aspects of the sys-
tem to match the rules of the other language (Ga-
mon et al., 1997), or utilizing parallel corpora to
transfer learning between languages (Jauhar et al.,
2018). Other projects look to make an English
system “language agnostic” (not biased towards
any one language) by editing parts of the prepro-
cessing algorithm (Daiber et al., 2013; Wehrmann
et al., 2017). The first method introduces a lot
of additional complications such as manual rule-
building, so it may seem attractive to make a
system that is completely language-blind. The
problem with this is that even generalized prepro-
cessing techniques are often still biased towards
languages with English-like structures (Bender,
2009), and in avoiding specifying anything about
the language one can miss out on common prop-
erties within language families that could increase
performance. For this paper, we strive to find com-
mon ground between making our system as gen-
eralized as possible and taking specific linguistic
structures into account if necessary.

One significant difference between our research



and many works in grounded language acquisition
is that our system is entirely trained off of noisy
short descriptions collected without filtering. This
has very different characteristics from the more
common corpora built off of newswire and other
forms of well-written text (a very common one
is multilingual Wikipedia), or data that has been
placed into structures like trees (Le Roux et al.,
2012). Our data is prone to errors in grammar and
misspellings; in this regard, our data is most like
that of works that use Twitter data (Pla and Hur-
tado, 2014). However, in contrast to (Pla and Hur-
tado, 2014), our system only uses token extraction
to find the relevant images to extract features from,
rather than extracting all features from just the lan-
guage.

3 Approach

In this paper, instead of building a new grounded
language system, we chose to start with an existing
system presented by Pillai and Matuszek (2018),
which we will refer to as the GLS (Grounded Lan-
guage System). This system attempted to learn
physical groundings of colors, shapes, and objects
by tying color and depth data derived from im-
ages of various items with natural language de-
scriptions of the images. As a broader research
goal, we seek to discover how effective the GLS is
at handling non-English data. We decided to start
with Spanish, due to it being very similar to En-
glish. We wanted to see if and how the slight dif-
ferences between the two languages would affect
the relative performance of the system.

To begin our analysis we explored the perfor-
mance of the system on translated Spanish data
with minimal modifications. Our analysis of these
results concentrated on identifying language dif-
ferences between Spanish and English that intro-
duced new complications in grounding language.
We used our insights from this analysis to inform
our experiments on real Spanish data collected us-
ing Amazon Mechanical Turk.

3.1 Data

Pillai and Matuszek (2018) used a Kinect depth
camera to collect images of fruit, vegetables, and
children’s blocks of various shapes (see figure 1
for examples). There were a total of 18 object
types, with four instances of each object. Each
instance had around five images taken using the
depth camera. For each of these images, RGB and

Figure 1: Examples of images of objects in the original
dataset. Each object had several examples called “in-
stances” and images of each instance were taken from
several angles.

HMP-extracted kernel descriptors (Bo et al., 2011;
Lai et al., 2013) were extracted from the RGB-D
data. The authors then collected descriptions of
these images in English using Amazon Mechani-
cal Turk. About 85 descriptions were collected for
each instance, for a total corpus of about six thou-
sand descriptions. As we discuss in section 6, our
own data collection process replicated this setup.

3.2 Grounding System

The GLS learned classifiers for meaningful tokens
in the categories of color, shape, and object in an
unsupervised setting. The system used the Me-
chanical Turk descriptions to identify which im-
ages were positive or negative examples of each
token. Images that were described with a partic-
ular token often were assumed to be examples of
that token. To find negative examples of tokens,
the GLS used document similarity metrics to com-
pare the descriptions for instances in vector space.
The instances that were sufficiently far away in
vector space from the identified positive instances
for a token that had also never been described with
that token were then chosen as negative examples
of that token. For example, suppose the system
were finding positive and negative instances for
the token “carrot.” A positive instance identified
might be “carrot 4.” In the document vector space,
the instances with the descriptions most different
from “carrot 4” would be “arch 1” and “cuboid
4,” while instances like “tomato 2” and “cucumber
3” are closer but still different enough to possibly
qualify as negative examples of the token “carrot.”

Tokens that did not have any negative exam-
ples or had fewer than three positive examples
were thrown away, with the assumption that there
was not enough data to learn a classifier. The fi-
nal classifiers were scored using the downstream
task of image classification. Held-out positive and
negative examples were presented, and the classi-
fiers were judged by how well they could identify



which examples were positive or negative.

3.3 Our Modifications

Our research focused on taking the existing sys-
tem and expanding it to work with Spanish. In
the immediate sense, there were low level changes
that had to be made throughout the code. English
uses very few accents and many of the files had to
have their encoding specified as unicode to handle
non-ASCII characters. These changes, though mi-
nor, reflect a potential barrier to the application of
research in new settings.

In addition to these minor fixes, more substan-
tial changes had to be made to the system that
preprocessed the image descriptions. The orig-
inal GLS used an English WordNet lemmatizer.
Lemmatizers are tools that take conjugated words
like “walking” or “brushes” and attempt to turn
them into un-conjugated versions like “walk” or
“brush.” This step can be very helpful for making
sure different versions of the same word are con-
flated. While this system worked well for English
tokens, non-English lemmatizers proved difficult
to find. Since we would ideally like our adap-
tations to the system to generalize well to other
future languages, we decided to first remove the
lemmatization step entirely, and later when this
proved unsatisfactory for Spanish (see Sect. 5), we
replaced the lemmatization step with a more avail-
able but rougher stemming step. Stemmers also
attempt to remove conjugations from words, but
they typically do so by chopping off common af-
fixes without attempting to end up with a real word
at the end. Words like “eating” will become “eat,”
but words like “orange” may become “orang.”

Another step that we modified was the re-
moval of “stop words.” In the original system
non-meaningful words like “the,” “and,” “or,” and
“if” were removed from the English data using
a list of predefined words. This was an impor-
tant step as it ensured that the system did not at-
tempt to learn groundings for words like “and.” At
the same time, we found that there were a num-
ber of words like “object,” “picture,” or “color”
that were used so often in the descriptions that
they held little physical meaning. These are des-
ignated as “domain-specific stop words,” which
refer to words that in general cases hold mean-
ing, but for the particular domain have been ren-
dered meaningless by their frequent and varied
use. We found that these words could be iden-

tified by their inverse-document-frequency (IDF),
where each “document” is the concatenation of all
descriptions for an instance.

4 Analysis with Translated Data

For our preliminary experiments, we only had ac-
cess to the English corpora from Pillai and Ma-
tuszek (2018). We wanted to get baselines in how
a Spanish corpora might perform. To do this, we
translated the existing English phrases to Spanish
through Google Translate’s API (Wu et al., 2016).

4.1 Translation Accuracy

As a sanity check on the quality of translation,
the translated text was translated back into En-
glish (once again with Google translate’s API) and
the English and back-translated English phrases
were compared manually to see if their overall
meanings were preserved. A total of 2,487 out of
the 6,120 (around 40%) phrases remained exactly
the same between translations. For the remaining
60%, five hundred back-translated phrases were
randomly selected and manually compared to their
original English version (see table 3 for examples).
Approximately 87% of the phrases examined pre-
served their meaning between translations, so we
estimated from this that about 90% of the phrases
were translated accurately (shown in figure 2).

Figure 2: Breakdown of meaning preservation for En-
glish and English-Spanish-English translation.

For those phrases that did not translate accu-
rately back to English, we observed a number of
patterns. Some of them were simply due to am-
biguities with the meaning of a word where the
wrong one was selected during one of the trans-
lations (as an example, for the bottom row of ta-
ble 3, “forma” can mean “shape” or “way”). A
common example of this was the phrase “this is
a red cabbage” becoming “this is a red wire,”
which happened six times out of the five hun-
dred selected phrases. Another error that occurred
three times was “laying on its side” becoming “set



Figure 3: Samples of English descriptions that were translated into Spanish and then back into English. The
column on the right indicates if the meaning of the original English text matches the final back-translated English

aside,” since the Spanish phrase “puesta de lado”
can mean “put sideways” but also “set aside.”

Other translation errors could be related to dif-
ferences in Spanish and English structures. The
pronoun “it” commonly became “he,” as Spanish
nouns are gendered. Phrases with many adjectives
saw them switching places with each other and
the nouns they were attributed to. For example,
“This is a picture of rectangular shaped blue col-
ored solid block” became “This is a solid block
photo of blue with rectangular shape.” This con-
fusion could be due to differences in the rules of
adjective ordering between English and Spanish.

5 Scores for English and Google
Translated Spanish

Figure 4: Proportion of color word forms in raw trans-
lated Spanish.

For the first experiment, we trained the model
on the translated Spanish and English corpora with

minimal preprocessing (lowercasing and remov-
ing punctuation), and tested the color tokens only.
Our goal was to get a baseline for how the system
would perform using words that would be easy to
compare between languages. It was expected that
the Spanish corpus would perform worse, since it
was not perfectly translated. When the tests were
run, the translated Spanish did perform slightly
worse (see figure 5), but an additional interesting
issue emerged.

Spanish is a highly inflected language (Le Roux
et al., 2012) and unlike English has adjective-noun
agreement. This means that a simple color word
like “red,” could translate to “rojo,” “roja,” “ro-
jos,” or “rojas” depending on the gender and plu-
rality of the noun it is describing. For the learn-
ing system this meant that the possible positive in-
stances for color words could be split between the
various forms, since different descriptions of the
same object might use a different form depending
on the structure of the sentence. We can see from
figure 4, that in the overall translated corpus, the
color words were split between different conjuga-
tions. This led to the hypothesis that some form
of lemmatization or stemming would be necessary
for Spanish, in a way that would have been less
essential for English.

We processed both the translated Spanish and
English descriptions with a Snowball stemmer
(Porter, 2001). We chose this stemmer as it is
readily available for a wide variety of languages
through the nltk library. See results in Fig. 5.

We can see from figure 5 that applying stem-
ming to the translated Spanish descriptions had a
small positive effect on the F1-scores of the color



Figure 5: Average Scores for English and Google
Translated Spanish color words.

Figure 6: Average number of positive instances for En-
glish and Google Translated Spanish, stemmed and un-
stemmed.

classifiers. It also slightly raised the average num-
ber of positive instances per token, since stem-
ming allowed instances that were split between
small counts of several forms of a word to see
them as the same word. We can see this in more
detail in figures 7 and 8, which show the differ-
ence between the average of the scores for the var-
ious forms of color words in the unstemmed data
(for example amarilla and amarillo would be av-
eraged as amarill*), and the stemmed score of the
stemmed form.

We can see in figure 7 that for the three col-
ors shown, stemming always increased the aver-
age precision for that color, but could reduce re-
call. In addition from figure 8, we see that some of
the colors had a large increase in average positive
instances, while others did not. This was likely
due to a case where many instances labeled with
“rojo” also saw enough “roja” that it was a posi-
tive instance for both. When looking at the counts
per instance, we found that for the 23 instances
that had the token “roj” in their stemmed descrip-
tions, 16 were positive examples of both “roja”
and “rojo” in the un-stemmed version. For objects
like cabbages (coles) and plums (ciruelas), “roja”

Figure 7: Comparison between the average of scores
for various conjugations of color words (shown as *)
and the scores of the stemmed versions.

Figure 8: Comparison between the average number of
positive instances across color word conjugations (see
figure 6) and the number of positive instances of their
stemmed forms.

was used dramatically more, while for tomatoes
(tomates), cubes (cubos), and cylinders (cilindros)
“rojo” appeared more.

As a final check, we examined the number of
occurrences over all descriptions of each instance
of the stemmed and un-stemmed versions of color
words. For most of the colors, instances were
often split between possible conjugations. For
“amarill” (yellow), there were five instances where
the individual counts of both un-stemmed forms
of yellow: “amarillo” and “amarilla” were less
than the threshold for a positive instance, while the
stemmed version “amarill” was able to overcome
that threshold. This is shown in the more dramatic
increase in number of positive examples in figure
8. The effect on the scores is more complicated,
since very yellow instances often had 50 or more
occurrences of “amarill.” Because of the inherent
messy nature of the data, instances with low but
still significant counts of tokens (more than five
occurrences) were much more likely to be falsely
positive examples that could damage a classifier.
We see this in figure 9 where the instance “egg-
plant 1” was called green seven times in the En-



Figure 9: Sample of instances that had more than five
occurrences of “green” in the English corpora.

glish data. This is clearly because the stem of the
fruit is green. However, a simple classifier may be
confused by this instance, since it is mostly purple.

6 Collection of Real Spanish Data

Exploring comparisons between English and
translated Spanish enabled us to get a basic idea
of how Spanish descriptions might differ from En-
glish. However, in order to truly compare the lan-
guages, we needed to collect real Spanish data. We
attempted to follow the methods described by Pil-
lai and Matuszek (2018) as closely as possible to
obtain comparable Spanish data to their English
data. We utilized Amazon Mechanical Turk to
collect Spanish descriptions of the images in the
database.1 In addition, workers were required to
have at least fifty HITs accepted before being el-
igible to work on our HITs. To avoid biasing the
workers towards a particular type of description,
we provided no example descriptions.

We excluded data from a small number of work-
ers who did not follow the directions (for example,
responding in English or randomly selecting ad-
jectives) and obtained additional high quality data
to replace their submissions. All other submis-
sions were accepted. This allowed for a wide vari-
ety of answers. One worker might simply name a
carrot, while another would describe how it tastes,
what foods it goes well in, or where it comes from.
The English dataset was similarly noisy. This is
desirable, as a robot that is trying to learn language
from an average user must be able to handle the
many ways in which a user might choose to intro-
duce a new object.

One possible danger in collecting Spanish data
that we considered was that someone might be re-
sponding in English and using a translation tool.
We attempted to check for this by comparing our
real Spanish data to the translated Spanish data.
We found that short descriptions like “Esto es un
limón” (this is a lemon) had a large amount of

1This was accepted as an IRB exempt study.

Figure 10: Total number of descriptions collected per
object in Spanish and English.

overlap, but in general most of the Spanish de-
scriptions were longer and did not mirror any of
the translated results. In future work, we hope
to find a better method to control for respondents
who don’t actually speak the language, likely by
requiring the completion of some short prelimi-
nary task like text summarization or more complex
image captioning.

The total number of Spanish descriptions per
object type was on average slightly lower than in
the English corpus (see figure 10). We controlled
for this in the results (section 7) by taking several
random subsets of both corpora such that each in-
stance had an equal number of Spanish and En-
glish descriptions and averaging the results.

7 Comparison of Spanish and English

7.1 Overall Scores

Figure 11: Average F1 scores for English and Spanish
classifiers, stemmed and un-stemmed, for each classi-
fier type. The error bars show the variance of these
scores across all runs, which was fairly low.



In figure 11, we see the final averaged F1-Score
for the color, shape, and object classifiers between
the original English and the collected Spanish de-
scriptions. Each score was found by averaging the
results of twenty evaluation runs each of ten train-
test splits. These scores were averaged across
all tokens learned, without specifically sub-setting
for the tokens that naturally represented colors,
shapes, or objects. In general, the scores were
fairly similar, varying between 0.8 and 0.84. From
the small differences we see that stemming ap-
peared to benefit the Spanish data for learning ob-
ject and shape classifiers, but slightly hurt the per-
formance for color classifiers. Un-stemmed En-
glish performed better than either Spanish version
for color and object classifiers. Much like with
Spanish, stemming appeared to help the shape and
object classifiers, and hurt the color ones.

7.2 The Effect of Stemming
As one can see from figure 11, the effect of Stem-
ming on the F1-Scores of the English and Spanish
classifiers was not consistent. For both the object
and shape classifiers, stemming appeared to either
benefit or have little impact on the object recog-
nition task. For the color tokens, stemming either
barely impacted or lowered the scores.

Stemming can cause words to be conflated cor-
rectly or incorrectly. Incorrect stemming can cer-
tainly cause problems, where tokens are conflated
that shouldn’t be (Porter, 2001), or words that
should be conflated are not. However, as discussed
earlier, it is also possible for correct stemming to
cause an instance to barely meet the threshold for
being a positive example of a particular token 9,
when perhaps that instance is not a good exam-
ple of that token in reality. This was a particu-
larly likely occurrence due to the inherent messi-
ness of the data and the fact that the GLS based the
classification label off of these messy descriptions.
Due to this, and the high amount of conjugation
in Spanish, it was decided that stemming likely
would not negatively impact the learning system,
and should most likely be employed.

7.3 Accents
One interesting difference that stood out when ex-
amining the real Spanish data was the use of ac-
cents. Unlike with the translated data, the real
Spanish data was inconsistent with its usage of
accents. While a majority of workers used ac-
cents where they were supposed to go, a not-

insignificant percentage of them left them out (see
figure 12 for examples). This is likely because
those workers did not have easy access to a key-
board with accented characters, and thus chose
to leave them off. We can see in figure 12 that
for common accented words, this had the effect
of splitting the data. Luckily, the snowball stem-
mer (Porter, 2001) automatically removed these
accents. We can see in figure 12 that after stem-
ming, the counts for the accented and unaccented
versions of the token were combined. The com-
bined classifier did not always have a higher score
on the testing data, for similar reasons to those dis-
cussed in section 7.2.

7.4 Stopwords

Without employing stop word removing during
preprocessing, the system learned a total of ten
words that could be classified as general stop
words for English and eight for Spanish (see fig-
ure 13). This means that for these words, there
was at least one instance where the word did not
appear in any description. For Spanish, the tokens
“de,” “es,” “una,” “y,” and “se,” and for English
the tokens “this,” “is,” and “a” all had zero nega-
tive instances and were appropriately removed.

Figure 13 also shows tokens that appeared in the
bottom 2% of tokens when sorted by IDF score.
This was our way of estimating “domain-specific
stop words.” Note that there were quite a few nltk
stop words that also had very low IDF scores.
The IDF method identified tokens like “object”,
or “looks” which were used very often in the En-
glish descriptions and had little physical meaning.
Figures 14 and 15 show how removing each type
of stop word impacted the scores of the raw clas-
sifiers. For both languages, the greatest impact ap-
peared to come from removing both general pur-
pose stop words and low-IDF tokens, though the
impact was small in all cases.

For the Spanish data, the tokens “amarillo” (yel-
low) and “roja” (red) were included in the bottom
2% of tokens by IDF score. These were common
due to the prevalence of red and yellow objects in
the dataset, suggesting a more nuanced approach
such as lowering the threshold for the percent of
low-IDF tokens to be thrown out.

8 Future Work

The work presented in this paper is ongoing. In
the near future we intend to expand the analysis on



Figure 12: Object Scores for three Spanish that could be written with and without accents. Note that stemming
removed accents, conflating stemmed and un-stemmed versions together.

Figure 13: Stop words that appeared often enough to
have classifiers trained on them. A dotted border indi-
cates a stop word from the language’s nltk stop word
list. A dashed border indicates this token was in the
top 2% tokens by ascending IDF score. A solid border
means the token appeared in both lists.

Figure 14: The impact on the average F1-score of re-
moving nltk stop words versus removing the lowest 2%
tokens by IDF score for English.

Figure 15: The impact on the average F1-score of re-
moving nltk stop words versus removing the lowest 2%
tokens by IDF score for Spanish.

the Spanish data. In addition many other possible
techniques like spell-checking or synonym identi-
fication could be used to improve the ability of the
system to handle the messy data.

A major next step for this research is to run our
analysis on a language that is very different from
English. For this, we intend to look next at Hindi.
Hindi is the native language for hundreds of mil-
lions of people (India: Office of the Registrar Gen-
eral & Census Commissioner, 2015). It is from a
different language family than English or Spanish,
has a wide variety of dialects with small linguis-
tic differences, and uses its own script. We antici-
pate that these properties will make Hindi a com-
plicated and interesting language to analyze, and
that doing so will introduce many new considera-
tions for the grounded language system.

9 Conclusion

We have proposed adaptations to expand an ex-
isting unsupervised grounded language acquisi-
tion system (Pillai and Matuszek, 2018) to work
with Spanish data. We discussed our initial ob-
servations with Google translated Spanish, and
explored the extent to which these observations
could be extended to real Spanish data collected
through Amazon Mechanical Turk. Through our
experiments, we were able to identify several dif-
ferences between the two languages that had to
be addressed in the system to attain comparable
results. At the same time, we did not find that
Spanish did significantly worse than English even
before applying additional steps. In general, the
existing system with slight modifications seems
to work fairly well for both languages, which is
promising when considering its applicability to
real-life situations.
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