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Grounded language acquisition is the modeling of language as it relates to

physical objects in the world. Grounded language models are useful for creating

an interface between robots and humans using natural language, but are ineffective

when a robot enters a novel environment due to lack of training data. I create

a novel grounded language dataset by capturing multi-angle high resolution color

and depth images of household objects, then collecting natural language text and

speech descriptions of the objects. This dataset is used to train a model that learns

associations between the descriptions and the color and depth percepts. Vision

and language domains are embedded into an intermediate lower dimensional space

through manifold alignment. The model consists of two simultaneously trained

neural nets, one each for vision and language. Triplet loss ensures that the two

spaces are closely aligned in the embedded space by attracting positive associations

and repelling negative ones. First, separate models are trained using the University

of Washington RGB-D and UMBC GLD datasets to get baseline results for grounded

language acquisition on domestic objects. Then the baseline model trained on the



UW RGB-D data is fine tuned through a second round of training on UMBC GLD.

This fine tuned model performs better than the model trained only on UMBC GLD,

and in less training time. These experiments represent the first steps of the ability

to transfer grounded language knowledge from previously trained models on large

datasets onto new models operating on robots operating in novel domains.
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Chapter 1: Introduction

The allure of having an in home robot assisting with tasks such as cleaning,

cooking, and caretaking is obvious. The time and effort saved by automating chores

with an entity that does not tire or complain would improve many lives [1–3]. You

could get home from work where your robotic chef has already prepared a meal for

you and passed off the dishes to another robot, freeing you to watch TV or play

with the kids. Meanwhile, your grandmother who can’t get up and down the stairs

as well as she used to was able to retrieve her medication from a robot who scurries

around the house. Another robot has finished cleaning and sorting the toys the kids

left out from last weekend’s play date.

One of the challenges of creating such robots is that peoples’ houses often have

unique objects that the robot must be able to interact with. For example, a cooking

robot would need to use the many tools within a users’ kitchen to prepare meals.

But how often have you entered someone’s kitchen and found a gadget you weren’t

familiar with Or a gadget that you were familiar with in a completely different form?

If a robot is presented with the same challenge, it will need to either learn about

the object, through asking questions, or already have the ability to understand the

object based on other things it knows about. Complicating this scenario is the fact

1



that kitchens around the world look very different, from the forks, knives, and stand

mixers of Western cultures to the woks, chopsticks, and chapati presses of Eastern

cultures. And this is just one environment that a robot might operate in. A whole

new set of objects and challenges are encountered in office and living spaces.

Grounded language acquisition can alleviate some, but not all, of these chal-

lenges. Grounded language acquisition is the process of joining natural language

with sensory input from the physical world [4–8]. By grounding the language on to

physical objects and senses, the robot attains a deeper understanding of its environ-

ment by not only being able to identify the objects, but relate their attributes to

other objects and senses. For example, a chef’s knife might be described as “sharp,

long, and used to cut things”. But when presented with a bread knife, prior language

knowledge not only allows the robot to identify it as a knife, it also understands the

edge is serrated, or that it has a different use than the chef’s knife. This can give

the robot a jump start on interacting with novel objects, but still requires that it

be taught about these objects.

One approach might be to have each person annotate the things in their envi-

ronment for the robot. The main problem is that in order for the robot to become

accurate enough through requires many more training examples than a typical user

would want to annotate and would need to be performed every time a new object

is added to the home [9]. Even within the small dataset presented in this work,

accuracy was only achieved after thousands of training examples which would be

infeasible for a human. One possible solution is for robots to teach other robots

what they know [4] either through transfer learning or domain adaptation. Transfer
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learning and domain adaptation are two machine learning techniques that use prior

training that is then adapted to related tasks or datasets. This not only reduces the

volume of training data needed for the end task, but can outperform models trained

solely on the end task due to greater context of related tasks.

Continuing with the kitchen example, imagine a robot trained on a large

database of common household items. For most purposes this robot could oper-

ate in a kitchen, but might fail if the kitchen was inside a bakery due to specialized

tools. With a smaller dataset of bakery items, the robot could fine tune its kitchen

model to adapt to its environment [10]. The robot would take what it already knows

about bowls, utensils, ingredients and modify its knowledge for the large industrial

mixing bowls, bench scrapers, and flour of the bakery. Furthermore, this dataset

could be generated from other bakery robots, eliminating the need for human an-

notation.

In this thesis I present UMBC GLD, a novel grounded language dataset of

RGB and depth images of common household objects and descriptions of those ob-

jects in natural language text and speech. This dataset represents the smaller fine

tuning dataset from the bakery example. To simulate the larger datset, I use a sim-

ilar RGB-D object dataset from the University of Washington [11] with paired text

descriptions. Manifold alignment [12] with triplet loss [13] is used to train grounded

language models on both datasets. Finally, I transfer the grounded language knowl-

edge learned from the UW dataset onto a model that understands the objects within

UMBC GLD. While manifold alignment and transfer learning are known techniques,

to my knowledge this represents the first time that they have been used together
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with grounded language acquisition.
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Chapter 2: Related Work

In this chapter I describe transfer learning and domain adaptation as well

as discuss some of the previous work in the Computer Vision (CV) and Natural

Language Processing (NLP) fields and how they relate to current work in grounded

language acquisition.

2.1 Computer Vision

The field of Computer Vision (CV) is concerned with the techniques and pro-

cesses through which a computer “sees”, or processes visual percepts. These raw

percepts range from the color spectrum that many humans are familiar with, to

infrared (IR) and various forms of depth sensing [14]. In this section I describe

two tasks that are important for grounded language, object classification and scene

segmentation.

2.1.1 Object Classification

Object classification is easy to describe yet difficult to achieve. Put simply, it

is the task of labeling the primary object within an image. The labels here refer to

human annotations, usually nouns, of the contents of the image.
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A popular algorithm for solving this task is convolutional neural networks

(CNNs) [15–17]. CNNs are neural networks that have specialized hidden layers.

Instead of the typical neural network which takes input from the entire image,

convolutions use kernels to capture local information within the pictures such as

edges, textures, and patterns [15,16]. In this work, CNNs are used to extract visual

features since the hidden layers can be thought of as complex feature extractors [18].

Possibly the most famous object classification challenge or benchmark is Ima-

geNet [19,20]. ImageNet now contains about 100,000 “synsets” (roughly a label, but

images can be part of multiple synsets) with around 1000 images representing each

synset. Interestingly, CNNs are still a very popular algorithm for this work with

Google reaching state of the art with their complex GoogLeNet architecture [17].

Eitel et al used ImageNet to pretrain their RGB and depth multimodal feature

extractor that is used in this thesis [18].

There is a subtle difference between object classification and grounded lan-

guage acquisition. Object classification can only tell us what label is associated

with the image at hand, and that label must come from the possible values within

the training data. Meanwhile, grounded language acquisition tells us how close lan-

guage is to describing a certain object through language modeling. The language

and the object need not be part of the training data since the description is passed

through a language model. Alternatively, some work uses GL to generate language

from visual percepts [6, 21].
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2.1.2 Scene Segmentation

The real world is messy and cluttered. In order to operate in the real world,

robots need to be able to make sense of the mess by using segmenting to break it

into pieces they can understand [22,23]. Once the scene is broken up, the robot can

use the visual inputs from each segment to run object classification or a grounded

language model to label or otherwise process the visual percepts. Scene segmentation

is also an important part of navigation in robots since it can be used to find navigable

surfaces such as roads [24] or break up indoor scenes to find walls, floors, and

obstacles [25].

Silberman and Fergus [25] explored scene segmentation of indoor spaces using

a Kinect depth sensor. This is promising for robotics since many research platforms

use a Kinect for visual perception. Within this thesis I used a Kinect to capture

depth information of objects, which means the same platform can be used for both

grounded language acquisition and scene segmentation.

This thesis does not make any direct use of scene segmentation since all of the

data was collected as individual objects. However, it is plausible that in future work

a platform could segment a scene and feed inputs into a grounded language model

to obtain a richer understanding of the world around it.

2.2 Natural Language Processing

Natural language is incredibly complex and the field of Natural Language Pro-

cessing is aptly broad and often just as deep. While there are two main domains
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that NLP is concerned with, text and speech, the number of applications and tech-

niques are many [26–30]. In this section I will mainly discuss tasks that are relevant

to grounded language. If the end goal is to communicate effectively with a robot,

then the robot will need to understand the natural language inputs that we give

it [31, 32] . Depending on the robot, it may also need to generate its own language

when asking for help, clarifying, or communicating internal states [21,33].

2.2.1 Part of Speech Tagging

Part of Speech (POS) tagging is the task of automatically annotating words

or tokens of a text with their corresponding parts of speech such as Noun, Verb,

Adjective, etc. Often these high level categories are broken down into more specific

classifications such as Proper Noun or Past Tense Verb [34]. This task is com-

plicated (at least in English) by homonyms and proper nouns which could have

multiple correct tags depending on the context. POS tagging is commonly used as a

preprocessing step or subtask of a larger NLP task. This is because parts of speech

are often useful features for other down stream tasks such as language modeling,

phrase recognition, and [4, 35].

The techniques for POS tagging are numerous. Brill created a simple rules

based POS tagger that does not use any previous knowledge of the syntax to perform

as well as stochastic methods of the time [36]. Shortly after, Schmid developed a

neural network solution which takes a word and surrounding words as input to the

net and outputs a classification vector where the greatest activation relates to a

8



part of speech [37]. Brants’ used a second order Markov model which further uses

the context of the sentence as a whole by accounting for probabilities of transitions

between parts of speech [38].

Today, the state-of-the-art algorithm for POS tagging is Akbik et al.’s [39]

highly complex Flair tagger1. Flair uses a Bidirectional, Long Short-Term Memory

(LSTM) with an additional conditional random field (CRF) decoding layer [40].

Bidirectional means that the model can look at the features of past and future parts

of the sequence, in this case words. An LSTM is a recurrent neural network model

that can store past inputs to influence how a sequence is classified or generated [41,

42]. Finally the CRF layer segments and labels the outputs of the LSTM [43].

2.2.2 Sentiment analysis

The more abstract field of sentiment analysis is concerned with interpreting

the mood, emotions, or attitudes of a speaker through language [44]. This NLP task

is particularly important in the field of Human Robot Interaction (HRI) where a

robot may want to adapt its behavior based on how the human is interacting with

it [45–47].

One of the benchmark datasets of sentiment analysis is the Stanford Senti-

ment Treebank (SST-5) which contains sentences rated on a 5-point scale of “very

negative” to “very positive” [48]. State-of-the-art NLP algorithms [49, 50] achieve

roughly 50-55% accuracy on when classifying the testing set of SST-5. One feature

of language that makes sentiment analysis so difficult is sarcasm [51]. However,

1https://github.com/flairNLP/flair
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being able to detect and understand sarcasm via text is becoming more important,

especially for understanding sentiment and meaning of online forums such as Twit-

ter and Facebook. These platforms host ”bots” that attempt to influence people

and identifying and understanding them is crucial to understanding how people

communicate online [52,53].

2.2.3 Language Modeling

Language modeling is simply computing probabilities of sequences of words or

sentences. This is a crucial task for robots interacting with humans both when gen-

erating and understanding their language. Tellex et al used inverse semantics to find

utterances for robots to ask for help while building furniture [21]. Roy maximized

the chances that a sentence would describe a target rectangle [8]. Many language

models use some form of LSTM but graphical models can also be effective [54–56].

In this work I use BERT as a language model to extract feature vectors from

text descriptions of object [55]. As discussed later in 5.2.1, BERT is a pretrained

English language model that works on multiple sentence documents to produce high

dimensional word embeddings.

2.2.4 Question Answering

Answering questions is natural for humans, but the task of parsing through a

question, understanding what it is asking, and generating the language in the form

of a response is a whole field of NLP. In robotics, the inquirer is often the human
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who needs help with a task. However, Tellex et al. [21] used grounded language to

generate requests for help in building furniture from human partners and Pillai et

al. [9] used question answering to improve annotation tasks.

This work does not make use of any question answering systems but is impor-

tant to metion since question answering is a potential solution to annotating novel

objects for robotic systems [9]. Additionally, the dataset that I create addresses

some, but not all, of the issues of question answering datasets such as CLEVR [57],

Scene and GeoQA [58] discussed in Section 2.5.3.

2.2.5 Automated Machine Translation

In an increasingly global world it is imperative that domestic robots are able

to be deployed in any country. In the context of communicating with these robots

using natural language, the apparent roadblock is modeling and translating multiple

languages. Most people are probably familiar with machine translation in the form

of Google Translate [59]2. Machine translation is the task of automating translation

of one language into another [60]. And while this work does not make any direct use

of machine translation, it is worth discussing in the context of grounded language

and domestic robots.

Beyond the task of modeling individual languages, language can affect how

people ground objects within their mind [61]. The “Bouba/Kiki effect” [62, 63]

suggests that humans connect attributes and characteristics to sound and language.

But even within a seemingly global similarity, there can be cultural differences [64].

2https://translate.google.com/
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Far too often, the scientific community focuses on English corpera for training NLP

and grounded language models. This is both because English is the lingua franca

of scientific research and it can be easier to use one of the many readily available

English corpera rather than create a new dataset in a different language. Despite

this, some work has been done to move multilingual grounded language forward.

Chen et al. [65] expanded upon their previous RoboCup sportscasting [66] to

cast games in both English and Korean without any prior language specific knowl-

edge. This work showed that grounded language acquisition could be done between

multiple languages. Kery took this further by exploring what model or preprocessing

changes are critical to consider when building such systems [67,68].

2.3 Grounded Language Acquisition

Grounded Language (GL) is a field of computer science that combines aspects

from CV and NLP to learn an association between the language and visual percep-

tion domains [4–7]. Learning these associations between the object and the label

instead of just the label for an entity is what makes GL unique amongst these fields.

In a sense, an effective grounded language model could describe a novel object by

understanding the links between the visual inputs it receives and the way our lan-

guage is structured when those visual inputs are present. Alternatively, it could

take language as input and through those associations select or find an example

of that language within the world around it. The link between language and the

physical world is what makes grounded language acquisition a promising solution
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for communicating effectively with robots, systems that are by definition interfacing

with the physical world.

One of the first experiments in grounded language acquisition was to train a

system to select colored rectangles from an arbitrary scene from descriptions of a

target rectangle [8]. The language sometimes described the target using the size,

color, or its relationship in space to other rectangles. Through a combination of

a language model and visual feature extraction, the system was able to do more

than label the colors of each rectangle in the scene, it was able to understand the

meaning of the language as it related to the scene. Mooney used this idea to train

a RoboCup (a robotic version of soccer) sportscasting agent [6]. The agent could

perceive a game states of RoboCup, and output sentences that would describe action

within the game.

The idea of an agent understanding action, tasks, and sequences is foundational

to how we would like to interact with robots. In order for them to clean, cook, shop,

and take care of us [1, 69], they need to be able to understand the directions and

tasks we give them without our demonstrating them first [70].

2.4 Transfer Learning

Transfer learning is a machine learning technique for training a neural network

with less training data [10,71]. The reason this is helpful is because for many tasks

there is not a lot of data. As discussed in Section 2.2.5, models in other languages

are useful but there is often not enough data to sufficiently train. Transfer learning
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helps get around this problem by first training the neural network on a large set of

data that is accessible and then performing a fine tuning step by training on data

from the target domain.

A common example is a neural network that is trained to recognize road

signs [72, 73]. Road signs are common in many countries, yet because of idiosyn-

crasies in infrastructure and driving laws are not globally uniform. For example, in

Germany a priority road is indicated by a yellow diamond inside a white border. A

network trained on US road signs would misclassify this sign. However, that doesn’t

mean that this network hasn’t learned useful information about classifying road

sings such as edge detection and color pattern recognition. This knowledge can be

leveraged as a starting point of training on a different dataset such as German road

signs. The net will retain some of its feature finding qualities without having to

relearn them and finetune its weights to perform classification on the new dataset.

The advantages to this technique are that the finetuning dataset need not be as a

large as the primary dataset, and the net doesn’t need to be trained for quite as

long since the weights are being tuned instead of learned.

In Chapter 5.4 I discuss a transfer learning experiment with a grounded lan-

guage acquisition model. The goal of the experiment is to show that transfer learning

is a viable technique for improving accuracy and training times of grounded language

models.
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2.5 Grounded Language Datasets

In this section I describe various useful datasets for grounded language learn-

ing. These datasets cover many tasks including object classification [11], question

answering [57, 58], direction following [74, 75], and instruction following [56]. Their

tasks and collection methods uncover many challenges of creating grounded lan-

guage datasets including the expense (both in time and resources), the need to be

augmented by generated data, or the limited scopes in which the data can be used.

2.5.1 UW RGB-D Dataset

The UW RGB-D dataset [11] is a large-scale data set built for training object

recognition models. The dataset contains over 250,000 RGB-D images of 300 unique

objects from 51 categories. In addition to the color and depth images, the authors

also released segmentation masks for each image. This allows for the removal of

background noise from the images in order to improve accuracy of classification.

While initially intended for an object classification task, there are many com-

puter vision datasets that can be augmented with language in order to enable

grounded language learning. Recently, the UW-RGBD data has been used in con-

junction with descriptions of the objects collected from Amazon Mechanical Turk

to explore category free grounded language [76]. However, this requires other re-

searchers to collect their own natural language descriptions, sometimes with anno-

tations, which can be expensive and time consuming [77].

I use this dataset with previously collected language descriptions as a basis for
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transfer learning to a dataset I collected that is discussed in Chapter 3.

2.5.2 Rectangle Descriptions

One of the earliest experiments in grounded language acquisition was Roy’s

rectangle description task [8]. The goal was to learn the semantics of language that

describes a computer generated scene. Each scene consisted of 10 randomly sized

and colored rectangles. Visual features, including RGB values, position, and size,

of each rectangle within the scene were “extracted.” The paired language describes

a target rectangle within the scene. Sometimes the paired language was simple and

contained few referents, while other times it was complex, with multiple referents,

spatial descriptions, and adjectives.

The visual data for this task can easily be generated by a computer program.

However, the language data, as in most tasks, is much more expensive to collect

since it requires a human in the loop and sometimes post-processing to transform

the raw data into something usable by researchers. For this particular task an

undergraduate recorded, at a very fast pace, 518 utterances over three hours. The

audio from this collection was then manually transcribed into text. The manual

audio transcription task can take anywhere between four and ten hours per hour of

audio depending on the quality of the audio being transcribed and the final quality

of the transcription [78–80].
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2.5.3 CLEVR, Scene, and GeoQA

The CLEVR dataset [57] consists of scenes of objects with annotations for

color, shape, size, and spatial relation to other objects within the scene. It was

designed to test a range of question answering and machine reasoning tasks. How-

ever, it is not very useful when generalizing to real world scenes. The objects within

the dataset are toy blocks that are monochromatic with well defined shapes such

as pyramids, cubes, and spheres. This makes the choices for the annotation task

very limited which in turn limits the types of questions and reasoning that could

be done on the scenes. For the limits of grounded language systems to be properly

exercised, there is a need for the datasets to more closely approximate the real world

with more realistic cluttered scenes.

Krishnamurthy [58] addressed this in their work on a question answering sys-

tem with their Scene and GeoQA datasets. Scene contains pictures of real world

office supplies arranged on a desk in various arrangements. Questions can then be

answered about the location of objects relative to others within the scene. GeoQA

is intended to test the same tasks with well annotated maps.

2.5.4 SAIL and Direction Following

Following directions through an environment is a necessary component of

robotic systems [81]. The SAIL dataset [74, 82] was used as part of an early ex-

periment into following direction using grounded language. The spaces were created

as virtual environments of hallways with identifying pictures on the walls. Par-
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ticipants were given time to learn these environments and then provide written

directions to get to landmarks within the environment. The virtual environments

and the 682 route instructions make up the corpus. Despite the environments not

being representative of the real world and flaws within the route instructions pointed

out in [74], this dataset is still in use today [83].

Matuszek, Fox, and Koscher [75] created a platform that uses a laser range-

finder to scan its environment. From the scan it uses Voronoi Random Fields [84]

to automatically label the map with an accuracy up to 90%. This eliminates the

need to generate and annotate maps and allows robots to work directly in their

environments. To compliment the maps, paths were generated and volunteers were

asked to provide directions for the robot to take the path. Eight volunteers were

asked to describe five paths, yielding a small natural language set of directions.

However, the authors augmented this small set by synthesizing short directional

phrases from the natural language. Thus the authors were able to create a robot

that understands natural language directions without the need of humans to create

or annotate a large training set.

2.5.5 Forklift Actions and Commands

Tellex et al [56] collected data about asking a virtual robotic forklift to per-

form various tasks. They did so by asking Turkers to watch a video of the forklift

performing an action. After watching the video they would type in a command that

could be given to a forklift operator to perform the demonstrated action. While
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very clever, this approach is narrow in its scope. It can only be applied to what was

included in the virtual environment including forklifts and the handful of objects

the forklift could interact with.

Recently, Shridhar et al. [70] have attempted to correct some of these short

comings by releasing ALFRED, a benchmark dataset for understanding commands

for every day tasks.
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Chapter 3: UMBC Grounded Language Dataset

In this chapter I describe a novel Grounded Language Dataset (GLD). The

intent is to use this dataset to train a grounded language model for a domestic robot.

The robot would then be able to perform household tasks and chores such as re-

trieving first aid materials and medicine, repairing broken items, building furniture,

organizing, cleaning, and cooking [3].

The dataset is made up of high resolutions images and point clouds (color +

depth) of common household objects from five high level categories of food, home,

medical, office, and tool. These categories closely match the similar UW RGB-D

dataset, but differ with the additional focus on medical supplies and smaller items

due to the higher fidelity of the Kinect 3 [11]. The images and point clouds are

captured from multiple angles since there is no guarantee that a robot would have

the same point of view as a human in the same space. Additionally, the visual data

is paired with natural language descriptions from the text and speech domains. This

pairing of visual percepts and natural language constitutes a novel set of data that

supports grounded language research.

This dataset address some of the challenges presented in Chapter 2.5 in a

number of ways. First, it attempts to capture varied sets of domestic objects through
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Topic Classes of Objects

food potato, soda bottle, water bottle, apple, ba-
nana, bell pepper, food can, food jar, lemon,
lime, onion

home book, can opener, eye glasses, fork, shampoo,
sponge, spoon, toothbrush, toothpaste, bowl,
cap, cell phone, coffee mug, hand towel, tis-
sue box, plate

medical band aid, gauze, medicine bottle, pill cutter,
prescription medicine bottle, syringe

office mouse, pencil, picture frame, scissors, sta-
pler, marker, notebook

tool allen wrench, hammer, measuring tape, pli-
ers, screwdriver, lightbulb

Table 3.1: The classes of objects that appear in GLD, grouped by their high-level
category.

its high level categories. This widens the scope of use to in home care such as

cooking and caretaking via the food and medicine categories, but also to domestic

work environments through the tools and office categories. Second, I provide the

natural language descriptions both in text and speech. This saves other researchers

time and cost of collecting and transcribing natural language which can be a burden

as discussed in Section 2.5.2. Finally, the intent is for this data to be used for a

number of tasks. The language corpus only contains descriptions of the objects

which can be used to ask and answer questions, similar to the CLEVR dataset [57],

or can be used to target commands involving the objects similar to Tellex et al’s

work [56].

This work was completed jointly with Padraig Higgins, Rishabh Sachdeva, and

John Winder of the IRAL Lab. Higgins provided hardware support for the Kinect 3
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and ROS. Sachdeva was responsible for collecting and analyzing the collected speech

descriptions. Winder helped with high level support of data collection and direction

of the work.

3.1 Image Collection

The visual data were collected using a Microsoft Azure Kinect, colloquially

known as a Kinect 3, using Microsoft’s Azure Kinect drivers for the Robot Oper-

ating System (ROS) [85].1 The Kinect 3 is an RGB-D camera consisting of both a

color camera and a Time-of-Flight (ToF) depth camera which enables it to capture

high-fidelity point cloud data. The Kinect Azure depth camera uses the Amplitude

Modulated Continuous Wave (AMCW) Time-of-Flight (ToF) principle . Near in-

frared (NIR) emitters on the camera illuminate the scene with modulated NIR light

and the camera calculates the time of flight for the light to return to the camera.

From this a depth image can be built converting the time of light to distance and

then encoded into a monochromatic depth image. ROS allows for the registration

of the color and depth images, matching pixels in the color to pixels in the depth

image, to build a colored point cloud of the scene.

The camera was placed 60 cm away from, and 30 cm above the turn able at

an angle of 30 degrees as seen in Figure 3.1. I collected a video for approximately

four instances per each of the 47 classes for at total of 207 instances. The camera

records one revolution of the turntable or 90 seconds at 5 frames per second for each

object, yielding 450 frames from different angles. Without any post processing the

1https://docs.microsoft.com/en-us/azure/kinect-dk/
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Figure 3.1: Set up for the visual object data collection. Objects are placed on the
motorized turntable and imaged by the Kinect 3 for one revolution or 90 seconds.
At a frame rate of 5 Hz, this yields 450 RGB, depth, and point cloud images of each
object from different angles.

raw data contains information about the background which is not related to the

dataset that is being collected. Point Cloud Library (PCL) [86] passthrough filters

were used to crop the raw point cloud to only include the object being collected and

the turntable. The point cloud is decomposed further into .png files of the color and

depth channels. Four frames were selected for each instance to be included in the

description labeling task. The final visual corpus thus contains 825 instance frames

with the associated raw image .png, color channel .png, depth channel .png, and the

original point cloud.

The depth channel is necessary in order to ground descriptions of shapes of

objects and improve the accuracy of object recognition [11, 87, 88]. While I use

a multi-modal approach to extracting features from the visual percepts based on

Richards’, Matuszek’s, Eitel’s, et al’s work [18, 76], it is a common task to identify
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Instance Raw Image Point Cloud (RGB + Depth) Depth

apple 1 1

coffee mug 2 3

hammer 6 2

Table 3.2: Examples from the visual data collection. From top to bottom: apple 1 1,
coffee mug 2 3, and hammer 6 2. The first number indicates the instance number,
the second number indicates the selected frame. Left to Right: instance name, raw
image, point cloud, and colorized depth.

Figure 3.2: An example of text and transcribed speech associated with a mug in-
stance. The speech descriptions have some noise in them due to imperfections in
Google’s Speech-to-Text algorithm.
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the shapes and poses of objects through their depth features [89].

3.2 Description Collection

Both the text and speech descriptions were gathered using crowd sourcing on

Amazon Mechanical Turk (AMT). Mechanical Turk allows users to publish anno-

tation tasks for users all over the world to complete. While some have criticized

collecting data this way as unreliable or not as representative as collecting data in

person, this is generally found to be inaccurate [90, 91]. Mechanical Turk protects

each Turker’s privacy by anonymizing each worker with a Worker ID. Although

it has been shown that there are techniques that can uncover a worker’s identity

through this Worker ID [92], the main concern is unethical gathering of personal

information through the Mechanical Turk task itself. Since my task does not collect

private information and the Worker IDs are not published, the risk to privacy for

Turkers working on my task is low.

3.2.1 Text Descriptions

Each AMT text Human Intelligence Task (HIT) includes five images of ran-

dom instance frames from the visual corpus. Workers were then asked to type a

description of each frame as if they were describing it to another person in one to

two short sentences without describing the turntable itself or the background. An

example of the HIT can be seen in Figure 3.3. Each task was assigned 10 times for a

final text corpus of 40 descriptions per instance and over 8000 total text descriptions.
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Figure 3.3: An example of the text description HIT. Turkers were asked to describe
each object in the HIT.

In order to work on my task Turkers must be in the United States, have a

HIT Approval Rate of 98% or greater, and have had at least 50 HITS approved.

These constraints were put in place to have a higher chance of getting high quality

Turkers who were native English speakers. Workers were paid $0.13 per HIT at a

conservative estimated minute per HIT to pay above US Federal minimum wage.

This is in line with recommendations of compensation from Lovett, et al [93] based

on their survey of Mechanical Turk Masters (MTMs). While I did not use MTMs

for this task, it is still important to compensate Turkers fairly.

3.2.2 Speech Descriptions

Humans use speech as a natural interface for communication. With improve-

ments in speech to text technologies, humans will increase the use of speech to com-

municate with technology such as robots and smart speakers. Therefore, I collected

speech descriptions of the objects as well. This data is not only useful for training

grounded language models, but is useful for comparing how humans describe things

within different domains.

26



A user interface was developed to collect spoken natural language data using

MediaStream recording API.2 A similar approach is reported in recent work [94,95]

to collect data using web-based and mobile application-based systems. The inter-

face was embedded into Amazon Mechanical Turk, and the recorded audio files were

collected from these tasks. The FFmpeg library3 was used to add the missing meta-

data from the audio files to make them compatible with Google’s Speech-to-Text

API4 which was used to transcribe the audio. As discussed in Section 2.5.2, manual

transcription of audio data can take large amounts of time [78–80]. Since there is a

heavy reliance on Google’s API, analysis was done to evaluate its effectiveness and

is discussed in Section 4.1.

Each Mechanical Turk task included one image and five assignments were

assigned for each task, an example can be seen in Figure ??. 4059 audio descriptions

were collected in total. The final dataset includes both the original speech files in

.wav format as well as the text transcriptions from Google Speech-to-Text.

2https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API
3https://www.ffmpeg.org/
4https://cloud.google.com/speech-to-text
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Figure 3.4: An example of the speech description HIT. Turkers were asked to record
a description of each image.
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Chapter 4: Data Analysis

4.1 Quality of Descriptions

One of the challenges of crowd sourcing data is being sure of the quality of

the collected data [93]. To test the quality of UMBC GLD’s text descriptions I

randomly selected 800, around 10%, and qualitatively annotated them on a four

point scale, 4 being the highest quality and 1 being the lowest. A more detailed

description of the scale with examples of each class is given below.

4: Good and detailed (Accurate and detailed)

- toothbrush 2 3: It is a toothbrush with a white and pink handle with
blue bristles.

- lime 3 4: This is a small green lime. It has a sticker on it with a barcode.

- measuring tape 3 4: This is a pink and black retractable tape measure

3: Ok descriptions (Accurate but not detailed)

- plate 3 2: It’s a round object that you eat on.

- stapler 1 3: This is a pink stapler

2: Bad or inaccurate (Good faith attempt that may be inaccurate or non-
descriptive)

- lime 2 1: this is a lime.

1: Unusable or technical error (Critical spelling errors, Turker filled in the
wrong text box, described the wrong object, answered in a language other
than English, etc.)

- plate 2 1: SERVE A FOOD.
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Figure 4.1: A histogram of the text description quality scores of 800 random samples.

- flashlight 3 4: a laser measuring tape

Of the 800 annotated descriptions the mean score was 3.34 out of 4, with a

standard deviation of 0.82. This indicates that many of the annotators provided

accurate and detailed descriptions, useful for performing grounded language acqui-

sition. Additionally, 496 of the descriptions used complete sentences. Many of the

descriptions marked as incomplete sentences were missing a verb but were still de-

scriptive such as “A small black book with an elastic band closure.” These types

of descriptions are still useful for learning grounded language acquisition since they

provide many descriptive phrases of the object.

A flaw in the analysis of the text descriptions was that I performed the anno-

tations myself and was also fully aware of the end usage. This sometimes clouded

my judgement when determining annotations of descriptions to rank them higher or
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lower. Therefore, while showing promise, this analysis will need to be redone with

an impartial judge who is not as familiar with the task, either in person or through

AMT.

4.1.1 Speech Quality

The speech collection and analysis was done by my collaborator Sachdeva [96]

and is a large part of his master’s thesis. I have included the top level analysis for

completeness but more information can be found in his thesis.

The audio file transcriptions were similarly quality checked with a four point

scale. These ratings are an indication of the quality of the transcription, not the

accuracy of the description of the object. It is important to note that since this scale

is different from the text description annotation task that the numbers reported here

cannot be compared to one another to say that text or speech was of higher quality

than the other.

4: Perfect transcription (accurate transcription and no errors)

3: Pretty good transcription (main object correctly defined)

2: Slightly wrong transcription (missing keywords/concepts)

1: Wrong transcription or gibberish/unusable sound file

Of the 100 audio files that were checked, the mean rating of a sample was

3.277 with 23% of samples considered poor quality, falling within categories 1 or

2. Interestingly, the quality dropped significantly when the number of words in the

transcription was less than three. This could be a byproduct of the speech-to-text

algorithm failing to find natural word breaks and transcribing longer words.
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The accuracy of the transcription was checked separately using a bilingual

evaluation understudy, or BLEU, score [97]. This score measures how well a sen-

tence matches a reference sentence by computing n-gram precision. BLEU was

originally intended for machine translation tasks and so this is an imperfect mea-

sure for transcription. However, n-gram precision can still give a sense of how close

two transcriptions are to one another. For the 100 checked transcriptions, a human

annotator transcribed each audio file to be used as the reference. The average BLEU

score for all transcriptions was 0.798. A score of 1 would be word for word matching

and so there is an indication that the speech-to-text software is working fairly well

at transcribing.

Figure 4.2: A histogram of the sound description quality scores of 100 random
samples. The mean score is 3.277 which indicates decent quality. 23% of the samples
are considered poor quality.
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4.2 Language Analysis

In order to uncover any differences in the text and speech descriptions that

might inform training techniques for grounded language models, I analyze the col-

lected text and speech descriptions for any important characteristics. Specifically, I

analyzed both the descriptions for the number of words used as well as mentions of

color, shape and object name. Color, shape, and object names were important to

track since they have been used as features to train grounded language models [98].

Even as grounded language acquisition moves into category-free learning, it is inter-

esting to examine how often color, shape, and object names are used in descriptions

of images [76,99].

I gathered a list of 30 common color terms from large language corpora and

compared each description to see if it included one of the common colors [100].

Similarly, I use a vocabulary list of shape terms to count how many descriptions

included shape descriptions. It is worth noting that shape descriptions are less

well defined than colors and that a better vocabulary of shape descriptions would

be helpful towards this kind of analysis. Finally, I count the number of times the

object name is used in a description.

It was initially hypothesized that people would use more words when describing

objects through speech than text because it is lower effort to talk than to type. As a

side effect of this hypothesis, the frequency of color, shape, and object names would

be higher in speech than in text. However, there is no significant differences in the

average length of descriptions between speech and text. In fact, while speech has
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Figure 4.3: Sentence length (number of words) frequencies of text and speech de-
scriptions normalized by the total number of text or speech descriptions. The aver-
ages for each were about the same at µtext = 7.8, µspeech = 8.7.

slightly more average words per description at 8.7 compared to text at 7.8, when

stop words are removed the averages are 4.7 and 5.0 respectively. The larger drop in

number of words from the speech descriptions may be due to filler words captured

with the speech-to-text API. There was also no significant difference in the frequency

distributions of mentions of color, shape, or object name between the two modes.

Table 4.1 shows the most frequent tokens in text and spoken data. Most of

the tokens are consistent in both cases, with color appearing as the most common

choice to describe the objects. The difference in magnitude of counts is because

there are almost twice as many textual descriptions as speech descriptions. There

are some interesting observations in both cases. People tend to use filler words

when describing the objects using speech. For example, the word “like” appears
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Figure 4.4: Word frequencies of text descriptions within GLD.

166 times in speech data whereas it was not significant in the text data. The

frequency of the word “used” is high in both modes which is typically used to

describe the functionality of certain objects. This observation is consistent with

anecdotal evidence from reviewing the descriptions.

Since the basic hypotheses were refuted, a deeper analysis using more sophis-

ticated methods such as language modeling will be needed to find significant dif-

ferences between the two domains. More complex differences may include sentence

structure and readability. Additionally, I may need more data and demographics

on those who provided the descriptions. A child performing the same task would

certainly have a less varied vocabulary than a college educated adult. I only col-

lected language from assumed native English speakers, however it is common for

non-native English speakers to replace words they don’t know with synonyms and
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Token Frequency

black 1073

object 924

white 817

blue 784

red 746

bottle 732

yellow 718

small 482

used 449

pair 436

green 432

plastic 341

box 310

silver 265

metal 220

pink 219

picture 188

orange 174

large 173

jar 164

Token Frequency

black 599

white 545

blue 427

bottle 385

red 360

yellow 353

object 268

green 231

used 223

handle 210

small 185

color 171

like 166

box 163

silver 163

pair 153

plastic 151

looks 131

pink 109

light 102

Table 4.1: The top 20 most frequent words and their frequencies in the textual
descriptions (left) and in the transcribed speech data (right). These distributions
are not normalized and there are about twice as many text as speech descriptions.
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phrases within their vocabulary.
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Chapter 5: Experiment

In this chapter I describe a baseline grounded language acquisition training

scenario utilizing my collected dataset.

5.1 Grounded Language Model using Manifold Alignment

For the transfer learning experiments I use two neural networks, trained to-

gether using manifold alignment with triplet loss. Manifold alignment is a domain

transfer learning technique where two high dimensional spaces, in my case language

and vision, are embedded in a lower dimensional space [12,101,102]. The key idea is

that each neural network transforms related data points from each high dimensional

domain to be close together in the lower dimensional domain. Therefore, if a novel

pair of data points are sent through the networks and they are close together in the

embedded dimension space, then the two are related. Conversely, if they are far

apart in the embedded dimension space, then they are unrelated.

In this thesis the two higher dimensional spaces are vision, RGB and depth,

and language, textual descriptions of the RGB images. By aligning these two do-

mains the model learns associations between the visual percepts and language. Thus

learning how closely the language describes the image, not just a label for what is
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Figure 5.1: A high level view of manifold alignment. The vision and language
domains are embedded into a lower dimensional space. Related pairs of vision
and text are aligned to be closer to each other within the embedded space. Novel
pairs can then be embedded to determine correspondence. Alternatively, inputs
from either domain can be embedded in the intermediate space to find associated
instances from the other domain.

in the image. I use triplet loss (Equation 5.1) as the loss function for the manifold

alignment. Triplet loss is a special loss function that takes as input an anchor, a data

point positively associated with the anchor, and a data point negatively associated

with the anchor. The loss function then encourages the network to pull the anchor

and positive closer together in the embedded space, while repelling the anchor and

the negative [13, 103]. The model is trained with triplets of vision, language, and

two special triplets where the anchor is vision or language and the positive and

negatives are from the other domain.

L(A,P,N) = max(‖ f(A)− f(P ) ‖2 − ‖ f(A)− f(N) ‖2 +α, 0) (5.1)
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5.2 Feature Extraction

Here I describe the process for feature extraction of the raw data.

5.2.1 Language Features

The language features were extracted using BERT, which stands for Bidi-

rectional Encoder Representations from Transformers [55]. BERT is a pretrained

English language model that performs well on many benchmark NLP tasks including

sentiment analysis, question answering, and inference [48,104–106].

For each instance in the two datasets, UW and GLD, all ten of its text de-

scriptions were gathered into a single multi-sentence descriptive document. BERT’s

English only lower cased pre-trained model was used to convert each of these doc-

uments into a feature vector. The default mean pooling operations was used since

each of these documents is a multi-sentence input. This operation averages the

word embeddings of all tokens within the document into a single feature vector.

This vector is of length 3027 which is the resultant language dimension of the man-

ifold alignment model. Notably, this dimension is the same for both the UW and

GLD datasets which allows me to feed data from one dataset into a model trained

on the other dataset. This is an important feature that eases transfer learning since

I do not need to add another layer to modify the size of the input to the network.

Speech descriptions were not included in the experiments for this thesis. I

discuss this further as part of Future Work in Section 6.1.
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5.2.1.1 Negative Examples

Many machine learning algorithms, including triplet loss [103], require a con-

cept of a negative example. For many tasks this is a concrete concept. For example,

if I have a model that is meant to recognize images of cats, then either the image

contains a cat or it doesn’t. However, in language, just because a description omits

certain words doesn’t imply the missing words constitute the opposite or a negative

example of that description. For example, someone may describe a bell pepper as

“a red, crisp, and fresh vegetable”, but it would be a mistake to assume that “green,

and gross tasting” was a negative description of a bell pepper class since someone

who does not like the green variety could still be describing a bell pepper.

To solve this problem, I follow the work of Pillai and Matuszek [98, 107]. I

find the cosine similarity metric between an instance’s language feature vector and

all of the other language feature vectors within the corpus. Since vectors that

are semantically similar will also be similar in their cosine similarity, I can choose

from the vectors that are most dissimilar as negative examples. In their work,

Pillai and Matuszek found an empirical threshold that gave the best results for

negative examples. Similarly, I chose to randomly select from the ten most negatively

associated language vectors as a description’s “negative example”.

5.2.2 Visual Features

Following the work of Eitel et al. [18, 76], I transform and combine the RGB

and depth percepts of each dataset into a multimodal visual feature vector using two
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CNNs. The RGB and depth channels of each image are run through separate CNNs

which are pretrained on the ImageNet dataset and fine tuned on the UW RGB-D

dataset [11,19]. The depth CNN is fine tuned by converting depth images into false

RGB color images, red is encoded as close and blue is encoded as far. The final

softmax layers that are used for classification are then chopped off the end of the

networks, leaving the new final layers as complex feature encoders. The two output

vectors are then concatenated together to form a single multimodal visual feature

vector. Similarly to the language features, the visual features are always output

in a 4096 dimensional vector, no matter the input size, which facilitates transfer

learning.

5.3 Baseline Experiments

Since the goal of this work is to be able to learn a grounded language model for

my new dataset with minimal training, I have two baselines. Both models are tested

on UMBC GLD, but are trained on UW RGB-D and UMBC GLD, respectively.

First a model is trained on the UW RBG-D data. This model will simulate an

expensive-to-train, large dataset, pretrained model since the UW RGB-D dataset

contains more images than UMBC GLD. However, as mentioned in Section 2.5.1

the text descriptions associated with each image are tied to the instance names, not

the images as in UMBC GLD. Since this model is a stand in for a pretrained model

that will be used as the basis for transfer learning, I test it on a held out datset

from UMBC GLD. This provides a baseline for the transfer learning experiment
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Figure 5.2: Vision feature extraction architecture. Two networks pretrained on
ImageNet have their classification layer removed and their final feature layers con-
catenated together to form a single 4096 dimensional feature vector.
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Experiment Name Training Set Testing Set Hypothesis

Baseline 0 UW RGB-D UW RGB-D Perform decently well

Baseline 1 UW RGB-D UMBC GLD Perform poorly

Baseline 2 UMBC GLD UMBC GLD Better than Baseline 1

Transfer Learning UW RGB-D then
UMBC GLD

UMBC GLD Faster to train, better
performance than Base-
line 2

Table 5.1: A summary of the grounded language experiments in this thesis.

discussed in Section 5.4 by giving me a sense of how well the model was doing

before the transfer learning and how much better or worse it does after the fine

tuning. A second model is trained on UMBC GLD and tested on the same held out

set from the first baseline experiment. This baseline excludes the pretrained model

step and so will let me know how well the model could have performed if starting

from random. Additionally, I performed a sanity check “Baseline 0” experiment

trained and tested on the UW RGB-D data to ensure that the model was working

correcly. A summary of the experiments can be seen in Table 5.1.

5.4 Transfer Learning Experiment

I take the model that was pretrained on the UW RBG-D data and run 50

epochs of training on the UMBC GLD training data. As discussed in Section 2.4,

this transfer learning step fine tunes the weights in the pretrained model to perform

better in less training time than a model trained on UMBC GLD alone. This fine

tuned model is then tested on the same held out GLD testing set as the previous

models.
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Figure 5.3: Training loss over 50 epochs of a manifold alignment model with triplet
loss trained on UW RGB-D data and paired text descriptions. Each epoch includes
around 6000 training pairs.
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Figure 5.4: Training loss of the GLD baseline experiment and the transfer learning
experiment. The GLD baseline was trained on about 600 training examples per
epoch for 50 epochs. The transfer learning experiments starts with an initial training
loss lower than the baseline experiment due to pretraining on the UW RGB-D data.
It then trains faster and achieves a lower training loss by the end of the same 50
epochs as the baseline experiment.
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5.5 Within Domain Experiment

One problem that can occur with the manifold alignment model with triplet

loss is that while the network may learn to align vision and text, the individual

vision and language networks are not consistent within themselves. In other words,

pairs of vision and language will be close to each other in the embedded space, but

positively associated images will be far apart in the embedded space. I would like

not only the pairs of vision and language to be close together, but related images or

related language as well.

To test that my model is achieving this, I find pairs of vision and language that

are both positively associated and negatively associated to a target pair through the

language domain using the technique described in Section 5.2.1.1. If the networks are

consistently aligned, then the distance in the embedded space between the target

and positively associated instance should be less than the distance between the

target and negatively associated instance for both domains. The relevant metric is

then how many pairs of the testing set satisfy Equation 5.2, where d() is a distance

metric, specifically cosine similarity for language and the euclidean distance for

vision. Table 5.5 contains the results from each experiment.

With the exception of the vision net in the transfer learning experiment, each

test does better than a random guess. However, the experiments tested on GLD

did far better in the language domain than Baseline 0. This could be a result of

differences between the language collected for the UW data and the language in

GLD. If there are differences that separate the description feature vectors further to
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Experiment Test Set Vision % Language %

Baseline 0 UW RGB-D 53.9% 52.6%

Baseline 1 UMBC GLD 53.2% 56.1%

Baseline 2 UMBC GLD 55.5% 73.4%

Transfer Learning UMBC GLD 48.6% 62.4%

Table 5.2: Results from the within domain experiment, given as the percentage of
test samples that satisfy Equation 5.2. Euclidean distance and cosine similarity were
used as the distance metrics for vision and language respectively.

begin with, then the network can start from a more distinguishing space, resulting

in higher percentages of separation between positive and negative instances. The

vision percentages in general are lower than the language percentages. This could

be because the language domain was used to determine what was positively or

negatively associated to the target sample. Because of this, two descriptions that

appear very similar could have very different or very similar images associated with

them. Additionally, all of the vision input data looks very similar, the table and

turntable are in every image. For the same reason that the language domain may

have been more separated from the beginning, this could have resulted in the vision

domain being densely grouped from the beginning, resulting in poorer within domain

performance.

d
(
f(A)− f(P )

)
< d

(
f(A)− f(N)

)
(5.2)
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5.6 Analysis

The hypotheses going into the transfer learning experiment are that the first

UW RGB-D to UMBC GLD model will perform the worst since the training and

testing datasets are separate. The second model will perform better than the first

for the complementary reason that the training and testing sets are from the same

data set. Finally, the transfer learning model will outperform both of the baselines.

It will outperform the first model since it starts from the end of training of the

first baseline and should improve its testing on UMBC GLD if it is fine tuned on

GLD. The transfer learning experiment should outperform the second baseline since

it starts with pretrained weights that are tuned to the same task but not the same

data.

To test my models, I first gather pairs of image and text descriptions from the

held out testing dataset. In order to calculate Precision, Recall, and F1, I need a

threshold distance in the embedded space to determine what is considered a positive

association. To do this, I take the pairs from the training set and find the Euclidean

distance between the vision and language feature vectors in the embedded dimension.

The mean of these distances plus one standard deviation is used as an upper bound

on distances that are considered positive. If the distance between two embedded

vectors is greater than this bound, then they are considered not associated. This

way I can compute the F1 score of all of my models.

Additionally, I report two other metrics: Mean Reciprocal Rank (MRR) and

Distance Correlation (DC). MRR is a measure of order preservation. To calculate
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Experiment F1 MRR DC

Baseline 0 0.1750 0.0313 0.1690

Baseline 1 0.0226 0.0824 0.2780

Baseline 2 0.1230 0.0930 0.2480

Transfer Learning 0.1700 0.0853 0.2270

Table 5.3: Results from tests of F1, MRR, and DC on the baseline and transfer
learning experiments. F1 is displayed in bold since it shows the improvements made
through transfer learning.

it, the distances of all pairs of an image and description are measured and ranked.

Then the multiplicative inverse, or reciprocal, of the rank of the nearest language

description that matches the class of the object from the visual data is found for each

image. The MRR is the mean of these multiplicative inverses [108]. MRR is therefore

between 0 and 1, with 1 being perfect preservation of the order of closeness in the

embedded space. The Distance Correlation metric measures how aligned the vision

and language embeddings are aligned. Essentially, if two images in the embedded

space are close together, then their paired language embeddings should also be close

to each other. This is computed by finding the Pearson correlation between the

image distances and the language distances of pairs. The range of this metric is -1

to 1 with -1 not being aligned and 1 being perfectly aligned. The results from the

tests are shown in Table 5.3.

The F1 scores for these experiments were underwhelming. Based on Richards

et al.’s [109] work with similar datasets and algorithms, I have reason to believe that

this method should perform better than it did. However, these experiments are still

illuminating for the promise of transfer learning for a grounded learning acquisition

task. According to the performance metrics, the hypotheses were true. The UW
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RGB-D trained network, when tested on the held out GLD testing set, performed

the worst. The GLD baseline performed much better. However, the transfer learned

network easily outperformed both.

Since the training set of GLD was much smaller than the UW RGB-D dataset,

this is promising for the ability to use pretrained manifold alignment models to then

quickly fine tune to more specific environments.
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Chapter 6: Conclusion

6.1 Future Work

The transfer learning experiment shows that the UW data and GLD data are

close enough in domain to be learned through transfer learning techniques. However,

more robust domain transfer learning techniques will be needed to perform similar

model tuning between different sensors or different environments [110]. In particular,

robots come in many different forms and interaction modes [111]. Some may have

depth sensors while others may only have RGB cameras while others still may have

completely sensors such as LIDAR or SONAR. As discussed in Section 2.2.5, to

deploy robots worldwide there is a need to understand many languages. Future

work will need to focus on both the differences in visual domains as well as language

to create robust models.

This work talks about algorithms for robots but never actually places a grounded

language model on a robot interacting with the physical world. As anyone who has

every worked with robots will know, the physical world has a way of exposing flaws

and edge cases in designs. These models should be loaded onto robots to stretch

their capabilities.

As mentioned in Section 5.2, an obvious area of future work is incorporating
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the gathered speech descriptions into the learning tasks. From the quality analysis

that was done on the two domains, it was clear that the speech data was dirtier than

the text data. However, more analysis would be needed to determine the differences

between the two modes and how the data quality affects learning.

Data gathering is never complete. As robots move into more parts of our lives

they will need more and more training data. Understanding how the speech-to-text

transcriptions can help alleviate some of the costs and barriers to producing higher

quality datasets to test new theories and models. Additionally, gather more objects

and possibly scenes of domestic living will be necessary to enable placing robots in

homes.

6.2 Contributions

In this work I have created a novel data set by combining high fidelity imaging

of domestic objects with collected text and speech descriptions of the objects. This

dataset will enable other researchers to test their grounded language models without

the high costs associated with gathering and analyzing text and speech descriptions.

I used that dataset to show that transfer learning is a viable option for fine

tuning grounded language models to specific environments. Specifically, it is feasible

to have one model that is pretrained on lots of data and use smaller data sets to

fine tune that model. This fine tuning step not only saves training time for the end

user, but outperforms training a model on solely the smaller dataset.

It is my hope that the continuation of exploring and applying transfer learning
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and domain adaptation techniques to grounded language acquisition will lead to

smarter, more useful domestic robots. For many people these robots could be a

path to a better and more fulfilling life. The ability to fine tune each one to a user’s

home and lifestyle is essential so that they can provide the help they were built to

provide.
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[62] W. Köhler, 1929.

[63] Nathan Peiffer-Smadja and Laurent Cohen. The cerebral bases of the bouba-
kiki effect. NeuroImage, 186:679–689, 2019.

[64] Andrew J Bremner, Serge Caparos, Jules Davidoff, Jan de Fockert, Karina J
Linnell, and Charles Spence. “bouba” and “kiki” in namibia? a remote cul-
ture make similar shape–sound matches, but different shape–taste matches to
westerners. Cognition, 126(2):165–172, 2013.

[65] David L Chen, Joohyun Kim, and Raymond J Mooney. Training a multilingual
sportscaster: Using perceptual context to learn language. Journal of Artificial
Intelligence Research, 37:397–435, 2010.

[66] David L. Chen and Raymond J. Mooney. Learning to sportscast: a test of
grounded language acquisition. In ICML, 2008.

[67] Caroline Patricia Kery, Cynthia Matuszek, Frank Ferraro, and Timothy Oates.
Esta Es Una Naranja Atractiva: Adventures in Adapting an English Language
Grounding System to Non-English Data. University of Maryland, Baltimore
County, 2019.

[68] Caroline Kery, Francis Ferraro, and Cynthia Matuszek. ¿ es un plátano? ex-
ploring the application of a physically grounded language acquisition system
to spanish. In Proceedings of the Combined Workshop on Spatial Language Un-
derstanding (SpLU) and Grounded Communication for Robotics (RoboNLP),
pages 7–17, 2019.

60



[69] Steven Brose, Douglas Weber, Ben Salatin, Garret Grindle, Hongwu Wang,
Juan Vazquez, and Rory Cooper. The role of assistive robotics in the lives of
persons with disability. American journal of physical medicine & rehabilitation
/ Association of Academic Physiatrists, 89:509–21, 06 2010.

[70] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,
Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A bench-
mark for interpreting grounded instructions for everyday tasks. arXiv preprint
arXiv:1912.01734, 2019.

[71] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359, 2009.

[72] Chunmian Lin, Lin Li, Wenting Luo, Kelvin CP Wang, and Jiangang Guo.
Transfer learning based traffic sign recognition using inception-v3 model. Pe-
riodica Polytechnica Transportation Engineering, 47(3):242–250, 2019.

[73] Shuren Zhou, Wenlong Liang, Junguo Li, and Jeong-Uk Kim. Improved vgg
model for road traffic sign recognition. Computers, Materials & Continua,
57(1):11–24, 2018.

[74] Matt Macmahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk:
Connecting language, knowledge, action in route instructions. In In Proc. of
the Nat. Conf. on Artificial Intelligence (AAAI, pages 1475–1482, 2006.

[75] C. Matuszek, D. Fox, and K. Koscher. Following directions using statistical
machine translation. In 2010 5th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 251–258, 2010.

[76] Luke E. Richards and Cynthia Matuszek. Learning to understand non-
categorical physical language for human-robot interactions. In Proceedings
of the R:SS 2019 workshop on AI and Its Alternatives in Assistive and Col-
laborative Robotics (RSS: AI+ACR), Freiburg, Germnany, June 2019.

[77] Rui Yan, Yiping Song, Cheng-Te Li, Ming Zhang, and Xiaohua Hu. Oppor-
tunities or risks to reduce labor in crowdsourcing translation? characterizing
cost versus quality via a pagerank-hits hybrid model. In Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, 2015.

[78] Jeanine Evers. Kwalitatief interviewen: kunst én kunde.
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