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ABSTRACT

Title of dissertation: SPEECH VS TEXTUAL DATA
FOR GROUNDED LANGUAGE LEARNING

Rishabh Sachdeva, Master of Science, 2020

Dissertation directed by: Dr. Cynthia Matuszek
Department of Computer Science

In this thesis, we describe the compatibility of audio data with the Grounded

Learning system adopted from text-only systems. My thesis work lies in the junction

of NLP, Speech, and Robotics. First, we conduct in-person user studies to collect

audio descriptions of household objects in a controlled environment. In this work, we

use category-based Grounded Learning System [9]. This system learns the meaning

of words used in crowd-sourced descriptions by grounding them in the physical rep-

resentation of the objects that the workers describe. We compare the performance of

the category-based model with the in-lab collected speech data and crowd-sourced

text data. We find that the system can learn color, object, and shape words with

comparable performance. To expand the analysis, we collect natural language de-

scriptions both in textual as well as speech format for various kitchen, office, and

household items using the crowd-sourced platform. Our work involves an in-depth

comparative and qualitative analysis of crowd-sourced speech and textual data. We

compare the F1-scores generated for learned tokens using the category-based model

for speech and text data collected using AMT. We find that the final averaged F1



scores of all the individual tokens learned are comparable in the two cases with no

significant difference.
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Chapter 1

Introduction

We are privileged to be living in a time where technology is present almost ev-

erywhere to assist us and make our lives easier. Due to technological advancements,

robots today are more productive, compact, and easy to use. With the widespread

use of products like Amazon Echo, Siri, and Roombas, robots are getting more and

more common in households. The United States is currently witnessing a rapid

increase in the elderly population. Robotics can play a vital role when it comes

to physical and cognitive assistance to the elderly and can help them to lead a

comfortable life [6].

Robots must communicate and understand the language, and should know

how to perceive the environment. Grounded Language Acquisition is a concept to

bind the natural language with environmental surroundings. Grounded Language

Learning is concerned with learning the meaning of language as it applies to the

physical world [7]. Matuszek et al. [5] came up with a joint model of language and

perception for grounded attribute learning, expanded in [9], and [10]. They design

and train Machine Learning models using image summarization text data. It is

necessary to introduce spoken language in training to make robots ready for the

real world. As robots become more capable and ubiquitous, there is an increasing

need for non-specialists to interact with and control them [7], and spoken natural
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language is a most flexible and intuitive way to communicate. The goal of our

work is to analyze how speech description differs from written ones and learn the

compatibility of text-only grounded learning systems with speech data.

Notable contributions of our work:

1. Introduce a robust multi-model Grounded Language dataset with image sum-

marizations in speech and text formats.

2. Comparative data analysis of speech and text corpus.

3. Adopt text-only grounded learning systems and determine compatibility with

speech data.
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Chapter 2

Related work

In this section, we discuss the literature associated with Grounded Language

Learning and the corresponding datasets.

2.1 Grounded Language Learning Datasets

There exist a variety of benchmark datasets to facilitate language and visual

tasks [17, 18]. Grounded language learning requires multimodal datasets-language

and visual, for development and evaluation of computational models. Sometimes,

the dataset is created to tackle a specific task that research attempts to achieve.

This usually leads to narrow applications. Notwithstanding such challenges, several

datasets are crafted for Grounded Language Learning. In 2013, Krishnamurthy and

Kollar [57] presented a SCENE dataset consisting of segmented images of indoor en-

vironments containing several ordinary objects and collected language descriptions

via AMT, where each image acts as an environment, and each boundary segment as

an entity. They introduced logical semantics with a perception model for grounded

learning that learns to map natural language statements to their referents in a phys-

ical environment. In 2014, Lin et al. [19] introduced widely known Microsoft COCO:

Common Objects in Context, an image dataset depicting everyday scenes of familiar

objects in their natural context. It contained a total of 2.5 million labeled instances

3



in 328k images and was traditionally designed to focus on vision-related problems

like object recognition and scene understanding. In 2017, Shekhar et al. [25], came

up with FOIL-COCO, which is an extension to MS COCO that introduced incorrect

or foiled captions with the only difference of a single mistake or foil-word to the orig-

inal ones. Their work showed how the Language and Vision models could fall into

traps with such data and emphasized on a fine-grained understanding of the relation-

ship between image and language. In the same year, Chrupala et al. [26] extended

MS-COCO by adding generated synthetic spoken captions using Google Text-to-

Speech and presented a visually grounded model of speech perception that projects

spoken language and visual features to joint semantic space. However, speaker vari-

ability is limited, as only one voice was used for speech synthesis. William et al. [20]

augmented the MS-COCO and added speech captions using Voxygen text-to-speech

to images and came up with the Speech-COCO dataset with more than 600k spo-

ken captions paired with images. Extensions to these datasets in other languages,

like Japanese, is also introduced in [29]. Our dataset differs from them in a way

how speech data is collected. In our work, we do not synthesize but collect actual

audio descriptions of an object in the form of wav files using AMT. Flickr8k [21]

and Flickr30k [22] datasets contains approximately 8,000 and 30,000 images from

Flickr, respectively. Both the datasets contain five descriptions per image collected

using AMT. Harwath and Glass [23] augmented the Flikr8k dataset by collecting

40,000 spoken captions using AMT. Krishna et al. [24] presented a visual genome

dataset to achieve success in cognitive tasks, containing textual image descriptions,

objects, attributes, relationships, and question-answer pairs. In total, it contains

4



over 108K images where each image has an average of 35 objects, 26 attributes, and

21 pairwise relationships between objects. In [34], Zellars et al. authors proposed

novel adversarial filtering to construct SWAG, a dataset with 113 multiple-choice

questions. Their idea was to build a large-scale adversarial dataset by oversampling

the potential counterfactuals using language models. Gaspers et al. described a Ger-

man multimodal corpus containing parallel data from multiple speakers, including

speech, visual, and body posture data. In [28], Bisk et al. discuss problem-solution

sequence (PSS) data, containing a sequence of frames that the robot sees while

fulfilling a goal. They focused on understanding the relationship between natural

language and complex actions and goals or from sequences of actions to natural lan-

guage. Most of the work we discussed above utilized crowd-sourced platforms like

AMT for data collection. AMT was created is 2015, and today is a prominent crowd-

sourcing platform that brings tens of thousands of people together to accomplish

tasks [30]. Goodman et al. investigated the differences between AMT participants

and traditional samples on several dimensions. Even though. They found that AMT

participants generally produced reliable results; they recommended using screening

procedures to maintain quality [31]. In [32], Lane et al. presented the tools for

collecting crowd-sourced speech corpora. The authors presented two different ways

for data collection, first, using the mobile application, and second, using AMT by

integrating external JAVA applet. In our work, we use AMT to collect speech de-

scriptions for objects; however, modify the internal AMT image summarization task

by including recording features.
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2.2 Grounded Language Acquisition

Grounded Language Acquisition, the task of mapping the natural language

to a representation in the physical world [7], has attracted tremendous interest in

recent times. Mooney [2] in 2008, discussed this integrative AI problem of learning

the connection between language and perception. Some of the pioneering work in

this area include ([1], [5], [59]).

Precisely, Matuszek et al. [5] in 2012 came up with the joint model of Language

and Perception for Grounded Attribute Learning, which is built on the existing work

of probabilistic combinatorial categorical grammar for semantic parsing [3], [4] and

visual attribute classification using depth kernel descriptors [70]. The work was

further extended by her in joint work with Pillai and others [44]. The key idea

was to incorporate the advantages of interactive labeling that uses active learning

to ask annotations from the human subject. [8], [9] focus on obtaining negative

examples of natural language annotations. Using semantic similarity, [10] described

an unsupervised system that learns visual classifiers associated with the words from

the corpus of perceptual and linguistic data. Chen and Mooney [59], with the

objective to decide the important events to comment on, from sportscasts of the

simulated soccer game, presented a novel commentator system that uses Iterative

Generation Strategy Learning (IGSL) algorithm.

Navigation task (NT): the task of translating the natural language instruc-

tions into a formal intermediate path description language also received substantial

attention. In 2006, Wong and Mooney [61] introduced a novel Word Alignment-
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based Semantic Parsing (WASP) algorithm to construct a formal representation

of a sentence using statistical machine translation (SMT) techniques. Matuszek

et.al. [62] used WASP to develop probabilistic translation model to follow naviga-

tional instructions without prior linguistic knowledge. Following this, Chen and

Mooney [63] presented a way to accomplish NT without prior linguistic knowledge,

and only by observing human behavior in complex synthetic indoor environments.

In 2013, Matuszek et al. [64] presented a system to learn grounding relations from

data without any predefined-mappings, that executes the required commands in the

previously unseen environment.

Thompson et al. [36], [37] presented clarification dialogues as a potential strat-

egy to acquire perceptual concepts on-the-fly. She and Chai [38] came up with an

interactive learning approach where robots actively engage with humans to acquire

models of grounded verb semantics. Further, Chai et al. [39] extended the work by

utilizing Reinforcement learning to determine when to ask what question to maxi-

mize the long-term reward.

Some works move past beyond using just visual percepts, and utilize properties

like weight or sound to establish groundings [42], [40], [41], [43]. Motivated by

human concept acquisition, Kiela and Clarke [40] came up with the approach of

learning the meaning of the object (say, some musical instrument) not only by visual

properties but also by auditory information like sound, pitch, and timber. Chen and

Ballard [43] present a way to accomplish a complex task of word learning by utilizing

the speaker’s intentional body movements like gaze, head and hand movements, to

establish relations between word and their grounded meanings. Thompson et al. [35]

7



came up with an interesting approach of utilizing haptic, auditory and proprioceptive

data, along with visual details to learn the groundings of natural language sentences

and words via human-robot I spy game. Some of the other works focus on binding

event sequence or actions to natural language [43, 45, 46, 47].

Attempts are made to perform grounded learning in multiple languages in

order to reach a wider audience [68, 69]. Kery et al. [66] adopted an English-only

Grounded Learning system [5, 9, 10], and examined the adaptations necessary for

it to perform equally well with other languages. Our current work adopts the same

Grounded Learning system, with the motive of measuring compatibility with spoken

annotations.
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Chapter 3

Background

3.1 Google speech-to-text

Google speech-to-text1 is an easy-to-use API which allows conversion of speech

to text format in real time using powerful neural network models. The API sup-

ports more than 120 languages and its variants. It has the ability to automatically

transcribe proper nouns and context-specific formatting. The API can be used for

real-time streaming, immediately returning resulting text as the user speaks. An-

other variation is to generate text from audio stored in a file. It comes along with

some pre-developed models that can be used according to the use-case:

• command and search: best for small queries.

• phone call: best for transcribing audio generated via phone calls.

• video: best for transcribing audio generated from a video.

• default: best for other cases.

The API accepts various parameters that can be modified as per use-case.

Some of the important ones are:

1https://cloud.google.com/speech-to-text

Portions of this page are reproduced from work created and shared by Google and used ac-

cording to terms described in the Creative Commons 4.0 Attribution License.
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• ENCODING : Encoding of audio data sent to API. We are using LINEAR16

encoding.

• SAMPLE RATE HERTZ : Sample rate of the audio data sent (in hertz). Valid

values are 8000-16000. Lower sampling rate may reduce accuracy. It is sug-

gested to keep this 16000 Hz for optimal performance.

• LANGUAGE CODE : language of the supplied audio. “en-US” is used for

English.

• ENABLE AUTOMATIC PUNCTUATION : Boolean parameter to enable ba-

sic punctuation (full stop, question mark, comma) in returned text.

• MAX ALTERNATIVES : Integer parameter referring to the number of recog-

nition hypothesis to be returned. Default is one. Please note that server may

return fewer responses than this parameter value. The generated text should

be in qualifying confidence value to be included in response.

• CHUNK : Audio Recording Parameter: In the python file, chunk refers to

frame size. Streaming Recognition recognizes live audio as it is captured using

microphone. The audio stream is split into chunks (or frames), and sent in

consecutive messages. Larger frames are more efficient, but can cause high

latency. 100 ms frame size is the suggested trade off between accuracy and

latency.
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3.2 Category-based Grounded Learning System

Category-based Grounded Learning system is ”word-as-a-classifier” based model

presented in [5] and expanded further in [9] and [10]. This system attempts to learn

the meaning of words used in crowd-sourced descriptions by grounding them in the

physical representation of the objects that the workers describe. We will be using

this system in our work to analyze the compatibility of this system with spoken

language descriptions. We call it Category-based because it binds natural language

descriptions with RGB-D features and learns groundings in the form of color, shape,

and object categories. We will be referring to this model by the name of CB-GLS

throughout this thesis. Figure 3.1 shows the flow of the system from data collection

to model evaluation.

• Image Feature Extraction: Pillai et al. used Microsoft Kinect to gather RGB-

D data of the ordinary household objects. Both color and depth features are

crucial for color, shape, and object classifiers. Originally, the authors used

an image dataset containing 18 object categories, each category comprised of

4 instances. Further, each instance had 4-5 images. We use a subset of this

image dataset to define the baseline for our study.

• Image Description Collection: The second step is to gather the descriptions

for the images generated. The authors used AMT to collect the language

descriptions in written English format and gather over 3000 descriptions. We

use the subset of this language dataset in our baseline study.

11



• Positive and Negative Data Extraction: After data cleaning and pre-processing,

the next step is to identify positive and negative images associated with mean-

ingful tokens. The authors used the TF*IDF strategy to identify the tokens

that should be learned by the system. The positive images related to the

specific token are determined using the ”bag-of-words” strategy. If the to-

ken appears in the descriptions of images more than a threshold number of

times, the image is considered as a positive example. For negative data points,

authors use Semantic Similarity between the descriptions [9]. The cosine sim-

ilarity between the vectors generated from descriptions is used as a distance

metric.

• Learning Classifiers: Image and depth features are now clubbed together with

the identified meaningful tokens. RGB-D data of the positive and negative

examples are used to train three binary classifiers (color, shape, and object)

associated with each useful token. RGB data is used to train the color classifier,

depth data is used for shape classifier, and both RGB and depth data is used

to train object classifier. The idea behind learning three classifiers is that it is

not known beforehand what the token might be describing - color, shape, or

object.

• Evaluation: In this step, test images are evaluated against all the learned

classifiers. Classifiers are scored based on how well they can report whether

the image is positive or negative instance associated with the concerned token.

12



Figure 3.1: Flow of Category-based Grounded Learning System [5], [9]
and [10]. Icons made by Freepik from www.flaticon.com
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3.3 Category-Free Grounded Learning System

Pillai et al. presented a learning system in which language is grounded in visual

precepts without pre-defined category constraints [11]. It’s named Category-Free

because it is a more general approach that learns grounding without pre-specifying

the category constraints (see figure 3.2 for the design diagram). Instead of learning

three different classifiers per meaningful token as in CB-GLS (yellow-as-color, yellow-

as-shape, and yellow-as-object), this approach attempts to learn a single classifier

(yellow-classifier). The approach involved the following steps:

• Concatenation of all visual features (RGB-D) into a single vector.

• Generating latent embeddings for the concatenated vectors. The authors used

a deep generative model of variational autoencoder [48] for the purpose.

• Combine visual embeddings and language descriptions to learn one classifier

per token.

3.4 Pre-processing techniques

Data cleaning and pre-processing is the first step after language data collection.

Basic data cleaning involves removing punctuations and converting the descriptions

into lower case. Sometimes, removing multiple spaces between th ethe words is also

required for smooth tokenization. Audio files may need some modifications to ensure

the compatibility with Automatic speech recognition systems. We use FFmpeg2 to

2https://www.ffmpeg.org/
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Figure 3.2: Design Diagram for Category-Free Grounded Language Ac-
quisition. Reprinted from [11].
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NLTK English stopwords

’ourselves’, ’hers’, ’between’, ’yourself’, ’but’, ’again’, ’there’, ’about’, ’once’, ’during’,

’out’, ’very’, ’having’, ’with’, ’they’, ’own’, ’an’, ’be’, ’some’, ’for’, ’do’, ’its’, ’yours’, ’such’,

’into’, ’of’, ’most’, ’itself’, ’other’, ’off’, ’is’, ’s’, ’am’, ’or’, ’who’, ’as’, ’from’, ’him’, ’each’,

’the’, ’themselves’, ’until’, ’below’, ’are’, ’we’, ’these’, ’your’, ’his’, ’through’, ’don’, ’nor’,

’me’, ’were’, ’her’, ’more’, ’himself’, ’this’, ’down’, ’should’, ’our’, ’their’, ’while’, ’above’,

’up’,’ both’. ’to’, ’ours’, ’had’, ’she’, ’all’, ’no’, ’when’, ’at’, ’any’, ’before’, ’them’, ’same’, ’and’,

’been’, ’have’, ’in’, ’will’, ’on’, ’does’, ’yourselves’, ’then’, ’that’, ’because’, ’what’, ’over’,

’why’, ’so’, ’can’, ’did’, ’not’, ’now’, ’under’, ’he’, ’you’, ’herself’, ’has’, ’just’, ’where’, ’too’,

’only’, ’myself’, ’which’, ’those’, ’i’, ’after’, ’few’, ’whom’, ’t’, ’being’, ’if’, ’theirs’, ’my’,

’against’, ’a’, ’by’, ’doing’, ’it’, ’how’, ’further’, ’was’, ’here’, ’than’

Table 3.1: NLTK English stop-words

add the required metadata before transcribing them using google speech.

3.4.1 Removing Stop Words

As discussed in sections 3.2 and 3.3, we are concerned with learning tokens as

classifiers. Stop words are the tokens that do not contribute to the meaning of the

sentence. It is necessary to remove such tokens to avoid our system to learn such

classifiers. We use NLTK English stop word corpus3 to identify and remove them

from language descriptions (see table 3.1).

3http://www.nltk.org/nltk_data/
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3.4.2 Lemmatization

Lemmatization is a technique to find the normalized form of the word. The

strategy is to identify a lemma, or ”basic form” for each token present in the doc-

ument [49], [50]. Lemmatizers attempts to replace the various variants of the word

(baking, baked) to their corresponding meaningful root (bake).

3.4.3 Stemming

Stemmers do not aim to replace various variants of a word by a correctly

spelled root word. Instead, it removes the affixes attached to the word. The core

idea is to reduce a word to their stem/root/base form makes it suitable for different

languages. One example can be converting ”baking,baked,bake” to ”bak”. We use

Snowball stemmer [51] in our work; it’s specifically designed for creating stemming

algorithms for use in Information Retrieval [54]. It is partly based on the familiar

Porter stemmer for English [52].

3.4.4 TF*IDF

TF-IDF stands for Term frequency-inverse document frequency, it’s one of the

most popular weighting scheme in information retrieval systems.TF-IDF is a sta-

tistical measure used to evaluate the importance of that word to the document in

corpus. TF refers to the frequency of a word occurred in the document. Normal-

ization is required to avoid bias between long and short documents. In our work,

we consider each object description as a document. IIDF or Inverse Document Fre-
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quency defines how often a token appears in all the descriptions of all the objects;

it determines how important the word is. The more often token appears, IDF pa-

rameter decreases. The strategy is to weigh down the words which appear in most

of the documents or descriptions. In our study, we collected descriptions for object

kept on a turntable. So, many users used ”turntable” in the descriptions, such to-

kens do not contribute any information about the object itself and hence are called

domain-specific stop-words [55], [56].

TF (t) =
Number of times term t appears in the document

Total number of terms in the document
(3.1)

IDF (t) = log
(

Total number of documents

Number of documents with term t in it

)
(3.2)
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Chapter 4

Crowd-Sourced Data Collection and Analysis - Speech and Text

4.1 Introduction

In this section, we present a multi-model Grounded Language Dataset (GLD)

containing images of everyday household objects and language descriptions in mul-

tiple formats: text, audio, and transcribed speech, and can be found in https:

//github.com/iral-lab/UMBC_GLD. We elaborate on our methods for creating vi-

sual corpus as well as collecting the spoken and textual language descriptions. We

attempt to analyze and study the nuances between the speech and text descriptions.

4.2 Image Data Corpus

We use Microsoft Azure Kinect1, widely known as Kinect 3 to collect image and

depth features. Figure 4.1 shows the data collection setup where Kinect 3 is mounted

on a tripod, and the object is placed on the turntable to collect images from various

angles. We gather raw images and point cloud data from 47 classes of objects across

the five high-level categories - home, office, medical, tools, and food items. Table 4.1

shows all the object classes grouped by their high-level category. Each class of object

contains roughly 4 or 5 instances, and each instance approximately contains four

images taken from different angles. Each object class and the corresponding number

1https://docs.microsoft.com/en-us/azure/kinect-dk
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of instances are mentioned in table 4.2. Figure 4.2 show different instances of the

same object class, and figure 4.3 presents images taken from different angles for

the same object instance. Images of the same object from various angles make our

data set more diverse and robust. In total, the data set comprises of 47 classes, 207

instances, and 825 images.

Figure 4.1: Data collection setup for RGB-D collection- Kinect 3 is
mounted on tripod. Object shown is soda bottle placed on turn table,
visual features are collected as turn table rotates for 90 seconds.

Figure 4.2: Five instances of Coffee Mug object class.
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Category Classes of Objects

home book, can opener, eye glasses, fork, shampoo, sponge, spoon,

toothbrush, toothpaste, bowl, cap, cell phone, coffee mug, hand

towel, tissue box, plate

office mouse, pencil, picture frame, scissors, stapler, marker, note-

book

medical band aid, gauze, medicine bottle, pill cutter, prescription

medicine bottle, syringe

tool allen wrench, hammer, measuring tape, pliers, screwdriver,

lightbulb

food potato, soda bottle, water bottle, apple, banana, bell pepper,

food can, food jar, lemon, lime, onion

Table 4.1: The classes of objects grouped by their high-level category.

4.3 Data Collection - Textual

We split the raw image videos into frames and select frames that capture

the object from different angles. We collect text descriptions for the images using

Amazon Mechanical Turk. Workers are asked to describe the object in a sentence

or two as if they are explaining it to someone else. The instructions mentioned not

to describe the background or turntable. A sample Mechanical Turk HIT is shown

in figure 4.4. Each HIT contains five objects to be described in a text format. We
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Object Class Number of Instances

hammer, marker, scissors 6

allen wrench, apple, banana, band-aid, bell pepper,

book, bowl, can opener, coffee mug, food can,

food jar, fork, lemon, lightbulb, lime, measuring tape,

medicine bottle, onion, pencil, picture frame,

plate, pliers, potato, screwdriver, shampoo,

soda bottle, spoon, stapler, syringe, toothbrush,

toothpaste, water bottle

5

eye glasses 4

cell phone, flashlight, hand towel, mouse,

prescription medicine bottle

3

cap, gauze, notebook, sponge 2

pill cutter, tissue box 1

Table 4.2: Object classes and number of instances per class.
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assign five assignments per task and collect 8125 text descriptions in total. Collecting

descriptions for images taken from different angles is crucial. Consider a case when

a person talking to a robot has a partial view or understanding of the object; it

is necessary to accommodate these groundings in our model. Consider figure 4.3,

where one of the mug images has a paw print on it, and the other two have either a

partial view or no such design. But all these images are of the same object instance;

hence, it is essential to gather descriptions for images taken from different angles.

Figure 4.3: Images taken from different angles for same instance of coffee mug. First

image has no paw print, second and third image has either partial or full paw print.

4.4 Data Collection - Speech

The motive of collecting audio data is to capture the nuances between spoken

and written language. It is common practice to restructure sentences before writing

them, but while speaking, we do not have the liberty to re-frame or restructure them.

Therefore, spoken sentences might be not very well framed or can be grammatically

incorrect. We support speech with body gestures, eye gaze, expressions or pitch of
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Figure 4.4: User Interface for text data collection embedded in Amazon
MTurk.
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the voice, which on the contrary are missing in written text. Experienced writers

may be able to overcome these differences while communicating. However, these

people usually hold formal education [14]. So, to enhance human-robot interaction

for a broader group of end users, it will be necessary to train robots with spoken

data. Moreover, it is possible that this unorganized and spontaneous obtained data

can prepare the robot even better for real-world scenarios. We develop a user in-

terface to collect spoken natural language data using MediaStream recording API.2

Further, the audio clips are stored in Amazon S33 bucket, which is a cloud storage

service. A sample HIT is shown in figure 4.5. Workers can play the recorded audio

and if not satisfied can record it again. Each HIT contains one object to be de-

scribed in spoken language and we assigned 5 assignments per task. We collect 4059

audio descriptions in total. A similar approach is reported in recent work [15, 16]

to collect data using web and mobile application-based systems. We embed the

interface into Amazon Mechanical Turk, and the recorded audio files are collected

from these tasks. We use the FFmpeg library4 to add the missing metadata from

the audio files to make them compatible with ASR systems. The audio files are then

converted to text using Google’s Speech to Text API.

2https://developer.mozilla.org/en-US/docs/Web/API/MediaStream_Recording_API

3https://aws.amazon.com/s3/

4https://www.ffmpeg.org/
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Figure 4.5: User Interface for speech data collection embedded in Ama-
zon MTurk.
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4.5 Comparative Analysis - Speech and Text corpus

In this section, we compare the text and speech corpus in various aspects. We

compare the two based on the number of words and characters in the description and

presence of nouns, adjectives, and verbs. We note the behavior when stop words

are removed. We attempt to measure the accuracy of transcriptions developed

using google speech-to-text using different metrics like WER and BLEU scores. We

perform pilot studies for quality evaluation and calculate Fleiss’ kappa scores for

inter-reliability before moving to a more extensive set.

4.5.1 Most Frequent Terms

Table 4.3 shows the most frequent tokens in text and spoken data. Most of

the tokens are consistent in both cases. The color appears as the most common

choice to describe the objects. Note that the difference in frequency of tokens in

two cases is because the textual data is almost double when compared to speech

data. We notice some interesting observations in both cases. People tend to use

filler words when describing the objects using speech. For example, the term “like”

appears 166 times in speech data, whereas it was not significant in the text data.

We also observe the frequency of the word “used” is high in both cases, which are

typically used to describe the functionality of certain objects.
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Token Frequency

black 1073

object 924

white 817

blue 784

red 746

bottle 732

yellow 718

small 482

used 449

pair 436

green 432

plastic 341

box 310

silver 265

metal 220

pink 219

picture 188

orange 174

large 173

jar 164

Token Frequency

black 599

white 545

blue 427

bottle 385

red 360

yellow 353

object 268

green 231

used 223

handle 210

small 185

color 171

like 166

box 163

silver 163

pair 153

plastic 151

looks 131

pink 109

light 102

Table 4.3: The top 20 most frequent words and their frequencies in the textual

descriptions (left) and in the transcribed speech data (right).
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4.5.2 Sentence length Analysis - Number of words

We hypothesized, initially, that people would use more number of words while

describing the objects in speech when compared to text because the effort consumed

in talking is less as compared to typing. We calculate the mean number of tokens

used by workers to describe the objects in both cases. We use all the speech and text

descriptions for these calculations. We find that the average is around 8.72 in speech

and 8.38 in the text corpus. After the removal of NLTK English stop words, the

mean of speech data length drops to 4.52, and in the case of text data, the average

comes down to 4.38 (see figures 4.6a and 4.6b for distribution plots). We expected

earlier that people would use more number of stop words in speech than written

descriptions. However, the mean drop difference is not significant. We observe that

the drop in mean difference is around 4.19 in speech and 3.99 in text data. The

distribution plots of sentence length show that the significant chunk lies below 20

words per sentence in both the cases (see figures 4.6 and 4.8). The difference lies

in the number of high word count sentences. In the case of text data, the number

of sentences with token length greater than 30 is 22, whereas it’s 116 in the case

of speech data. Percent wise, the sentences with word count higher than 30 make

2 percent of the speech corpus, whereas this percent value is 0.54 in case of text

description. Consider 20 as a threshold measure; this percent value is 6.6 percent

in speech corpus and 3.3 percent in the text corpus. We observe a similar behavior

towards the lower end of the spectrum. The number of descriptions with length

less than 4 is 327 in the text corpus and 750 in speech corpus. Percent wise, these
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sentences make 18 percent in speech and 8 percent in the text corpus.

When we remove stop words, the distribution plots show that most of the

descriptions contain less than 15 tokens (see figures 4.7b and 4.7b). In this case 269

speech descriptions contains more than 10 tokens and 138 of textual descriptions

comprises more than 10 tokens (see figures 4.7 and 4.9).

The middle value or median lies close to each other in both the data sets.

In the text corpus, the median is 7, and in speech, it is 6. When we remove stop

words, median values drop to 4 and 3 for text and speech data sets, respectively

(see figure 4.11).

We find that the length of text descriptions are less spread out when compared

to speech ones. We observe this behavior in the original descriptions as well as the

ones with no stop words. The standard deviation of lengths of text descriptions is

5.14, and in the case of speech, it is around 8. When we remove stop words, the

standard deviation comes down to 2.58 for text data and 3.96 for speech data (see

figure 4.10).

4.5.3 Sentence length Analysis - Number of characters

In this section, we compare the text and speech corpus based on the number of

characters in the description. When the number of characters is concerned, the mean

and median of the data sets are in similar lines. The mean number of characters 41.2

and 42.4 in text and speech corpus, respectively 4.12. Median is on higher-end in

the case of the text corpus. It is 34 for text and 31 in the case of speech descriptions.
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(a) Text distribution (b) Speech distribution

Figure 4.6: Distribution of sentence length in Text and Speech data.

(a) Text distribution (b) Speech distribution

Figure 4.7: Distribution of sentence length in Text and Speech data with stop words

removed.
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(a) Text distribution (b) Speech distribution

Figure 4.8: Density Probability Distribution of sentence length in Text and Speech

data.

(a) Text distribution (b) Speech distribution

Figure 4.9: Density Probability Distribution of sentence length in Text and Speech

data with stop words removed.
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Figure 4.10: Standard deviation Comparison.

Figure 4.11: Median Comparison.
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The interesting observation here is the difference in standard deviation between the

two sets. The text corpus shows the standard deviation of 25.9, whereas it is 39.2

in the case of speech set.

We observe high variations in the standard deviation of the number of charac-

ters and number of words in both the data sets. Hence, we see a greater variety in

descriptions when the length is concerned or the number of tokens used. Sometimes,

google speech-to-text collapse multiple mumbled words into a single long term. It

also sometimes breaks a single complex word into multiple words. It happens when

the input speech is not very clear. This kind of behavior may occur because of

the quality of the microphone, background noise, or accent of the user. These rea-

sons may also contribute to high fluctuations in the length of descriptions in speech

corpora.

(a) Text distribution (b) Speech distribution

Figure 4.12: Distribution-Number of characters in text and speech corpus.
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4.5.4 Nouns, Adjectives and Verbs in Descriptions

We use Stanford Part-of-Speech (POS) Tagger 5 to count the number of nouns,

adjectives, and verbs in the descriptions. We are interested in evaluating the occur-

rence of nouns, verbs, and adjectives because we believe they play a central role in

defining groundings associated with any object. We find that the mean number of

noun tokens in text descriptions is slightly higher than the speech one. The same is

the case with adjectives. When verbs are concerned, occurrence in speech descrip-

tions is marginally higher. When we remove nouns, adjectives, and verbs from the

sentence, mostly determiners, articles, pronouns, conjunctions, and auxiliary tokens

are left. We find that the mean occurrence of these tokens is around 10.4 percent

higher in speech than in text corpora (see table 4.4). The results show that people

tend to use more such words while describing the objects in spoken language. This

may also occur due to transcriptions produced by google speech-to-text. Consider

one such example mentioned below.

Google transcribed text: again used for containing food

User said: a can used for containing food

In the above example, google transcribed text missed a noun (can) which is

an important associated grounding to the object (food can). These errors may also

affect the noun and adjective count in the speech corpora.

5https://nlp.stanford.edu/software/tagger.shtml
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Text Descriptions Speech Descriptions

Mean Noun occurrence 2.59 2.49

Mean Adjective occurrence 1.25 1.17

Mean Verb occurrence 0.52 0.62

Other token mean occurrence 4.02 4.44

Table 4.4: Averaged number of noun, adjective and verb occurrence in text and

speech data.

4.6 Accuracy of Google transcribed Responses

In this section, we aim to measure the accuracy of the collected speech tran-

scribed descriptions. We observed that the standard deviation of the length of

google transcribed text of the collected speech corpora is on the higher end when

compared to the text data set. It is necessary to evaluate the transcriptions as we

further use this data with the category-based grounded learning system. To measure

transcription accuracy, we manually rate the randomly picked 100 audio samples,

which comprises around 2.4 percent of the whole speech data set. We also mea-

sure the accuracy of transcriptions using Bilingual Evaluation Understudy or BLEU

metric.
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4.6.1 Pilot studies to rate transcriptions

Before moving to a more extensive set, we conducted two pilot experiments

where three raters evaluated the quality of transcriptions. In the first experiment,

we randomly picked nine audio files to be rated. Raters are asked to evaluate the

quality out of 4 using the following scheme:

• Rating 1: wrong transcription or gibberish/unusable sound file,

• Rating 2: slightly wrong transcription (missing keywords/concepts),

• Rating 3: pretty good transcription (main object correctly defined),

• Rating 4: perfect transcription (accurate transcription and no errors).

Also, raters are asked to mark the audio file as Incomplete when the audio

file is blank or unusable. The overall agreement between the three raters is about

75 percent. We calculate the Fleiss’ kappa statistic 6 to assess the reliability of the

agreement [12].

• N = num of cases (sound files = 9)

• n = num pf raters (3)

• k = num of categories (4)

In table 4.5, the categories are presented in column and the subjects (tran-

scription) are presented in the rows. Each cell in the table lists the number of raters

who assigned the indicated subject (row) to the indicated category (column).

6https://en.wikipedia.org/wiki/Fleiss kappa
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nij RATING #1 RATING #2 RATING #3 RATING #4
∑k

j=1 n
2
ij Pi

Transcription 1 0 0 1 2 5 0.3333333333

Transcription 2 0 0 0 3 9 1

Transcription 3 0 3 0 0 9 1

Transcription 4 0 1 2 0 5 0.3333333333

Transcription 5 0 3 0 0 9 1

Transcription 6 0 0 0 3 9 1

Transcription 7 0 0 0 3 9 1

Transcription 8 0 0 3 0 9 1

Transcription 9 0 1 1 1 3 0

TOTAL 0 8 7 12

pj 0 0.2962962963 0.2592592593 0.4444444444

Table 4.5: kappa calculation for pilot 1.
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pj =
1

Nn
sumN

i=1nij (4.1)

k∑
j=1

pj = 1 (4.2)

Pi =
1

n(n− 1)

k∑
j=1

nij(nij − 1)) (4.3)

Pi =
1

n(n− 1)

k∑
j=1

(n2
ij − nij) (4.4)

Pi =
1

n(n− 1)
[(

k∑
j=1

n2
ij) − n] (4.5)

P̄ =
1

N

N∑
i=1

Pi (4.6)

P̄ =
1

Nn(n− 1))
(
N∑
i=1

k∑
j=1

n2
ij −Nn) (4.7)

P̄e =
k∑

j=1

p2j (4.8)

κ =
P̄ − P̄e

1 − P̄e

(4.9)

N∑
i=1

Pi = 0.3333333333 + 1 + 1 + 0.3333333333 + 1 + 1 + 1 + 1 + 0 (4.10)

N∑
i=1

Pi = 6.666666667 (4.11)

P̄ = 0.7407407407 (from equations 4.6, 4.7 and 4.11)

P̄e = 0.3525377229 (from table 4.5 and equation 4.8)

κ = 0.5995762712 (from equation 4.9)

Hence, the kappa statistic for pilot 1 study is about 0.6, which is considered

to be moderate/substantial agreement between the raters.

In the second pilot experiment, we picked ten random transcriptions, and three
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nij RATING #1 RATING #2 RATING #3 RATING #4
∑k

j=1 n
2
ij Pi

Transcription 1 0 0 0 3 9 1

Transcription 2 0 0 0 3 9 1

Transcription 3 0 0 0 3 9 1

Transcription 4 0 0 2 1 5 0.3333333333

Transcription 5 0 0 0 3 9 1

Transcription 6 0 1 2 0 5 0.3333333333

Transcription 7 3 0 0 0 9 1

Transcription 8 2 1 0 0 5 0.3333333333

Transcription 9 2 1 0 0 5 0.3333333333

Transcription 10 0 0 0 3 9 1

TOTAL 7 3 4 16

pj 0.2333333333 0.1 0.1333333333 0.5333333333

Table 4.6: kappa calculation for pilot 2.

different raters are asked to evaluate the transcriptions using the same quality scale

(out of 4). We improved the interface used for evaluation in terms of usability and

clarity according to the feedback gathered in the first experiment. In this interface,

the user can click on the link present in the spreadsheet to play the audio clip

directly. In the previous study, a manual search in google drive was required.

From table 4.6 and equations 4.6

N∑
i=1

Pi = 1 + 1 + 1 + 0.333 + 1 + 0.333 + 1 + 0.333 + 0.333 + 1 (4.12)

N∑
i=1

Pi = 6.666666667 (4.13)
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P̄ = 0.7333333333 (from equations 4.6, 4.7 and 4.13)

P̄e = 0.3666666667 (from table 4.5 and equation 4.8)

κ = 0.5789473684 (from equation 4.9)

The kappa statistic for the second pilot is around 0.58. Hence both the pilot

results represent moderate/substantial agreement among the raters. Although the

kappa scores are not high in both the pilot rounds, we observe that disagreement was

not more than one on a quality scale between the raters. In multiple cases, we find

that if two raters evaluated one of the subjects as 1, and the third rater marked it

as 2. It never occurred that the third rater evaluated it on other extremes (4 in this

case). However, kappa scoring does not incorporate such factors in the evaluation.

So, we believe the kappa scores are sufficient to move further with evaluating a

broader set.

4.6.2 Transcription Accuracy of 100 randomly selected descriptions

We choose 100 audio descriptions, which comprises of 2.4 percent of the whole

speech data set and evaluate the quality. We rate these transcriptions out of 4 using

the same rating scheme as in the pilot experiments. We also manually transcribe

these 100 audio clips to measure the quality precisely. We find that 77 percent of

the sound clips are high-quality, i.e., rated as 3 or 4. 13 percent of the clips are

rated as 1, which is considered as gibberish/unusable (see figure 4.13).

To measure the quality of transcription, we use the BLEU metric; it is origi-
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Figure 4.13: Quality rating wise distribution.

RATINGS OBJECT DESCRIBED GOOGLE TRANSCRIPTION MANUAL TRANSCRIPTION

1 Toothpaste Institute best It’s a toothpaste

1 Spoon did Persephone used to serving before this is spoon made up with wood used for serving food

1 Soda bottle lovesick 100 African Buffalo it is a plastic one and half liter bottle of coke

2 Stapler
this is the stuff inside mechanical device

which joins Legends of paper

this is a stapler, it is a mechanical device which joins pages of paper

2 Can opener emmanuel 10 opener with a blue handle A manual tin opener with a blue handle

2 Hand towel its a folded great owl it’s a folded gray towel

3 Shampoo bottle what is a bottle of shampoo that is a bottle of shampoo

3 Mouse
Addison black color Mouse can be used

in laptop or system

it is a black color Mouse can be used in laptop or system

3 Coffee mug Arizona white coffee mug There is a white coffee mug

Table 4.7: Some example with transcription-quality ratings.

nally a method for automatic evaluation of machine translation. We use this metric

as it is quick, and inexpensive that correlates highly with human assessment, and

has a little marginal cost per run [13]. The core idea behind BLEU is the closer
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machine translation is to human translation, the better it is. BLEU is a widely used

metric to measure the accuracy of language translations based on string similarity;

we adopt this system to evaluate the goodness of transcriptions. This method rate

the readings out of 1. Higher the score, the better the translation. The metric looks

for the presence and absence of the concerning tokens. The method works by finding

n-gram overlaps between machine translation and reference translations (see 4.14).

N-grams are a contiguous sequence of n tokens present in a sentence. Unigram or

1-gram represents matching a singe token occurrence, and bigram corresponds to

matching two adjacent words. BLEU metric system requires two inputs:

• Human reference translations (In our case, human transcriptions)

• Automated translation output of the same data set (In our case, google tran-

scriptions)

BLEU = min(1,
output− length

reference− length
)(

4∏
i=1

precisioni)
1
4 (4.14)

We find the BLUE scores of all the transcriptions in the randomly chosen

sample of 100 speech descriptions. We find the mean BLEU score of the sample set

to be 0.58, and the median is 0.76 (see figure 4.14 for distribution). When we only

consider the transcription rated 3 or 4, the BLEU mean rises to 0.73, as expected.

We observe an interesting relationship between Quality Ratings, BLEU scores, and

the length of descriptions (see figure 4.16). We find that if the number of tokens in

the description is low, the probability of incorrect transcription produced by google

speech-to-text is higher (see figures 4.17 and 4.18). When the number of words in
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Figure 4.14: Distribution of BLEU scores.

Figure 4.15: Distribution of BLEU scores after applying smoothing func-
tion.
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the description is less than 3, the mean Rating is 1.62, and the average BLEU score

drops to zero. The BLEU metric we used is not suitable for short descriptions,

especially ones with length less than 4. In such cases, the score will always be

zero because 4-gram never appears, causing the product of precisions to zero. To

mitigate this effect, we apply smoothing function [78] to add 1 to both numerator

and denominator while calculating precision. In this case, we find the mean BLEU

scores to be 0.71 (figure 4.15 shows the distribution). Plots 4.17 and 4.18 shows

the impact of sentence length on accuracy of transcriptions. We observe the short

sentences with length less than 4 terms show poor transcription accuracy. This may

occur due to the following reasons:

• When the number of words uttered is less, the google speech-to-text doesn’t

work as expected.

• Sometimes, google speech-to-text collapses multiple mumbled words into a

single long term, resulting in a decrease in sentence length as well as accuracy.

Word Error Rate (WER) is widely accepted as the de facto metric for ASR.

It works by calculating the distance between the system’s results - called the hy-

pothesis - and manually transcribed text - called the reference. It is derived from

the Levenshtein distance, working at the word level instead of the phoneme level.

The Levenshtein distance is a numerical value of the cost of the least expensive

set of insertions, deletions, or substitutions that would be needed to transform one

string into another [71]. The WER metric computes the minimum-edit distance
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Figure 4.16: Relationship between BLEU score, Ratings and Sentence
length.
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Figure 4.17: Relationship between Ratings and Sentence length.

Figure 4.18: Relationship between BLEU scores and Sentence length.
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between the ground-truth sentence and the hypothesis sentence of a speech-to-text

API. WER can be computed as:

WER = 100 ∗ S +D + I

N
(4.15)

where

• S = number of substitutions,

• D = number of deletions,

• I = number of insertions,

• C = number of correct words,

• N = number of words in reference (N= S+D+C).

We evaluate WER for the same subset of 100 randomly picked audio descrip-

tions. We find that the mean per audio description WER is roughly 21.3 percent.

Figure 4.19 shows the distribution of WER in the subset. Out of 100 audio de-

scriptions, 42 showed the error rate exactly 0, that means the manual transcription

and speech-to-text output matched precisely. For other 58, there exists atleast some

transcription error.

4.7 Role of Accent and Gender

In the same random set of 100 audio descriptions as discussed above, we also

note the gender and accent of the speaker. We tried to make these decisions as ac-

curately as possible, but we understand there could be marginal errors involved. We

find that the number of female speakers was slightly higher than male participants.

Accent wise, we find 23 percent of the descriptions are exhibit Non-American En-
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Figure 4.19: Distribution of Word Error Rate in 100 speech descriptions.

Accent Type Mean Rating Mean BLEU Mean WER

American Accent 3.63 0.9 14.2

Non American Accent 2.086 0.47 54.3

Table 4.8: Variation in Transcription Quality with accent

glish. We observe that there is a substantial change in the quality of transcription

because of the variation in accent. When we compare the quality of descriptions in

American accent with non-American ones, we find that mean rating drop roughly

by 42.5 percent, and the mean BLEU scores by 60 percent, and Word Error Rate

jump by 282 percent. Table 4.8 shows the mean ratings, BLEU scores, and WER

in the two cases. However, we witness no such significant quality distinctions when

gender is considered.
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Figure 4.20: Gender and Accent variety in Mturk workers

Figure 4.21: BLEU scores and Sentence length in accurate and original
random set.

4.8 Analysis - Accurate Transcriptions

In this section, we use the same 100 randomly chosen speech descriptions. We

study the behavior of high-rated (3 or 4) descriptions and compare them with the

original random set. In this set, 77 descriptions are rated as 3 or 4, and 23 are rated

either 1 or 2. BLEU scores show a rise from 0.79 to 0.95, and WER roughly declines
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Figure 4.22: Noun, adjective and verb occurrence in accurate and origi-
nal random set.

from 21 to 9.8 percent, as expected. We see a spike in average sentence length in

the accurate transcriptions, when compared to the whole set. The average number

of tokens in the accurate transcriptions is 8.66, whereas, in the original sample,

the mean number of words per sentence turns out to be 7.64 (see figure 4.21).

The accurate transcriptions also perform better when the occurrence of nouns and

adjectives are considered (see figure 4.22). We use Stanford Part-of-Speech (POS)

Tagger 7 to count the number of nouns, adjectives, and verbs in the descriptions.

The presence of the average number of nouns per sentence shows a rise from 2.34 to

2.68, and the average adjective count increases from 1.01 to 1.18. Hence, the noun

and adjective presence heighten up by around 17 and 14.5 percent, respectively.

7https://nlp.stanford.edu/software/tagger.shtml
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4.9 Some observations from pilot study

As we discussed above, there are challenges involved when working with speech-

to-text technologies. ASR systems are still not mature enough to deal with factors

like accent, background noise, and microphone quality. In speech data collected

in controlled environment, we found various gibberish translations. Some of such

examples are:

• Cucumber: Ambar, Akumal, Humber, skookum bird, Green ombre, Goomba,

Cucamonga, car bomber

• corn: coin

• fruit: flute

• cube: green tube

In the same study, we find certain descriptions captured that are completely

irrelevant to the objects. The speech engine misinterpreted the descriptions uttered

on the whole sentence level. Some of these are:

• Chimera assembly news in Scotland

• But one of our flight Carlos Agassi and Jackal country

• Is opium Malaysian cleaners kind of color

• A green coconut oil used for along with lunch or dinner in silence

• This is a banana and it is slightly Android and you can be laminated

Another observation is the impact of the experimenter’s presence on the length

of object descriptions. Interestingly, we find that subjects are more comfortable

while performing user studies in the absence of any authoritative figure. In the
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absence of an experimenter, the descriptions collected are much more detailed and

lengthy.
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Chapter 5

Approach

In this section, we compare the performance of CBGLS (section 3.2) with

speech and written data. We transcribe the speech descriptions using google speech

API to feed the models. We start with a small pilot study to develop a baseline for

our experiments. We further expand the study and use more advanced GLD dataset

(section 4.2) with crowd-sourced language descriptions (sections 4.3, 4.4).

5.1 Implementation

In this section, we elaborate on the implementation details of CBGLS and

the inputs accepted by the system. In the training Summary section, we illustrate

how meaningful tokens are determined and further trained as classifiers. In the

validation summary, we elaborate on the process of calculating F1-scores, Precision,

and Recall to measure the system’s performance.

5.1.1 Inputs to the System

5.1.1.1 Parameters

1. Visual features: We use RGB-D features of images for training. We elabo-

rate the process of feature extraction in the experiment sections.

2. Annotation file: This file contains language descriptions of images. Each line
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in the annotation file contains the name of an object, corresponding instance,

and description. Below is an example of one such line where coffee mug is an

object, and coffee mug 2 is one of its instances.

coffee mug/coffee mug 2: it is a black and yellow coffee mug with paw print on it

3. Category Types [color, shape, object ]: The system accepts at least

one and a maximum of all three categories. To train classifiers as color type,

RGB features are utilized, and depth features are used for shape category.

Concatenated RGB-D features are used for training classifiers as the object

category. The classifier corresponding to all the tokens are learned according to

categories provided. The underlying idea behind training three classifiers per

token was that a new token might be representing a color, shape, or object, and

a robot with no prior knowledge would not intrinsically know which category

the token should belong to.

5.1.1.2 Hyperparameters:

1. MINIMUM TOKENS PER INSTANCE: As the system follows a word-

as-a-classifier approach, this parameter is used to decide the positive training

images per token. To associate token to an image, we need strong association

evidence. In a Mturk task, if a user describes an onion instance as a tomato by

mistake, or speech-to-text generates some gibberish tokens, we do not want

our system to relate such terms to the image. So, if the term appears in

descriptions of an instance atleast MIN TOKEN PER INST number of times,
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then only the instance is considered as a positive data example for classifier

corresponding to a particular token.

2. THRESHOLD NUMBER OF POSITIVE INSTANCES: This param-

eter regulates the number of tokens that the system learns as classifiers. To

train a classifier (corresponding to a token), we need a fair amount of positive

data images, without which system might perform poorly. To avoid such be-

havior, when a token maintains higher than THRESHOLD POSITIVE INSTS

number of positive examples, then only it is qualified to be learned.

3. NEGATIVE SAMPLE PORTION: The system choose negative examples

by learning a paragraph vector, for instance-descriptions from the annotation

file and using cosine similarity to find the most distant paragraph vectors. This

parameter regulates the number of negative instances per token-as-classifier.

The system uses oversampling to balance the data before training; we find

in our experiments that the system performance varies significantly when we

tune this parameter.

5.1.2 Training Summary

In this section, we summarize the implementation details of CBGLS involved

in training. In our work, we introduce some modifications in the system to enhance

the performance with the GLD dataset, which we discuss in the experiments. See

figure 5.1 for a diagram version of steps below.1

1. Inputs = RGB-D features, language annotations conf file [tomato/tomato 1:

1created using app.diagrams.net
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language description], and categories for training [color, shape, object ].

2. Fetch Tokens per instance: Find all associated tokens corresponding to

each instance using the input annotation file. Example: coffee mug/coffee mug 1:

mug, coffee, drink, milk, cup, white.

3. Find Instance set Find all object classes and the corresponding instances

from the annotation file [coffee mug: coffee mug 1, coffee mug 2,..].

4. Split the test – training instances: Randomly select one instance as a

test instance from each object class. For example, consider an object class

(coffee mug) with five instances. Each of the five instances has concatenated

RGB-D features of multiple images. A random instance (out of five) is selected

to be a test instance, and each instance possesses about 4-5 images. Therefore,

approximately 4-5 images of each object are part of the test set. For one of

the experiments, we modify the test-training strategy and incorporate 6-fold

cross-validation.

5. Positive and Negative training data per token: Find positive and neg-

ative instances for tokens. Only training instances are considered.

(a) Finding Positives: If a token appears >= MIN TOKEN PER INST

for an instance, then the instance is considered as a positive example for

the corresponding token. If no positive instances are found, the token is

not learned.

(b) Finding Negatives: Steps to find negative instances for a token:

i. For each pair of instances, get the distance between their descrip-

tions using the doc2vec and cosine similarity metric. Store it in a
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dictionary (let’s call it negCandidateScores).

ii. Filter out pairs containing any test instances.

iii. Sort the remaining pairs by distance, and keep only two-third of them

(ignoring rest).

iv. Now, choose N most dissimilar ones from the remaining.

N = int(math.ceil(float(len(negCandidateScores.keys()))∗

NEGATIV E SAMPLE PORTION))

6. Finding Meaningful Tokens: The input is the conf file containing language

annotations. The next step is to identify the meaningful tokens that the

system should learn. For a token to be considered useful, it should possess

more than THRESHOLD POSITIVE INSTS number of positive instances. In

simple terms, the token should be present in the descriptions of more than 3

instances. The meaningful tokens are identified based on the training language

corpus (descriptions of the training instances only).

7. Training classifier per token: Now, fit the Logistic Regression model on

each token (from step 4) using identified positives and negative. Output:

(a) groundTruthPredictionTrain.csv: contains probability results of ap-

plying the classifiers on training data.

(b) groundTruthPrediction.csv: contains probability results of applying

the classifiers on test data.

58



Figure 5.1: Training Code Flow Diagram for CBGLS
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5.1.3 Validation Summary

In this section, we discuss the implementation details for the validation, the

approach that system use to measure the performance by calculating F1 scores,

Precision, and Recall. We adopt the changes presented by Kery [66] to select the

true negative examples per token. See figure 5.2 for diagram version.2

1. Inputs: Annotation file and results from training (groundTruthPredictions.csv).

2. Find Test Instances and Classifiers: Fetch the tokens and prediction

probabilities from groundTruthPredictions.csv. This file has the tokens, the

ground truth, and the probability of each test instance when the token for

that classifier is applied to it.

3. Find True Positives and True Negative Instances per token learned

in training: Positives and negatives are identified in the same fashion as in

training time, descriptions of only test instances are considered. Serialize

the TP and TN in two separate files that are used in next step.

(a) Finding True Positives: If a token appears>= MIN TOKEN PER INST

number of times for an instance, then the instance is considered as a pos-

itive example for the corresponding token.

(b) Finding True Negatives: Steps to find negative instances for a token:

i. For each pair of test instances, get the distance between their de-

scriptions using the doc2vec and cosine similarity metric. Store it in

a dictionary (let’s call it negCandidateScores).

2created using app.diagrams.net
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ii. Sort the remaining pairs by distance, and keep only two-third of

them.

iii. Now, choose N most negative ones of the remaining.

N = int(math.ceil(float(len(negCandidateScores.keys()))∗

NEGATIV E SAMPLE PORTION))

4. F1, Precision, Recall per token-as-classifier: Calculate F1, Precision, re-

call and store it in CSV. For a token, select p positive and n negative instances

from the test set.

(a) p = number of positive instances.

(b) n = number of negative instances

(c) p is a randomly chosen integer out of [1,2,3] and n is decided accordingly.

i. p = random([1, 2, 3])

ii. n = random([4, 5, 6]) − p− 1

5. For each token, repeat step-4 ten times. Further, evaluate the average statistics

(10 runs) per token. Table 5.1 shows the sample output for token “bulb” after

one validation run. Similarly, the F1 scores, Precision, and recall are generated

for each of the tokens, and validation is executed ten times. The final stats

are reported in experiments as the average of scores from all the individual

tokens.
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Test Object Images Ground Truth Selected by Classifier Precision Recall F1-Score

lightbulb/lightbulb 2 1, band aid/band aid 2 7,

lightbulb/lightbulb 2 6, apple/apple 3 1,

medicine bottle/medicine bottle 3 7

lightbulb/lightbulb 2 1,

lightbulb/lightbulb 2 6

lightbulb/lightbulb 2 1,

lightbulb/lightbulb 2 6

1 1 1

apple/apple 3 7, medicine bottle/medicine bottle 3 1,

lightbulb/lightbulb 2 6, coffee mug/coffee mug 5 1,

band aid/band aid 2, lightbulb/lightbulb 2 11

lightbulb/lightbulb 2 6,

lightbulb/lightbulb 2 11

coffee mug/coffee mug 5 1,

lightbulb/lightbulb 2 6

lightbulb/lightbulb 2 11

0.67 1 0.8

lightbulb/lightbulb 2 1, apple/apple 3 13,

lightbulb/lightbulb 2 16

lightbulb/lightbulb 2 1,

lightbulb/lightbulb 2 16

lightbulb/lightbulb 2 1,

lightbulb/lightbulb 2 16

1 1 1

lightbulb/lightbulb 2 11, lightbulb/lightbulb 2 16

apple/apple 3 1, band aid/band aid 2 7

lightbulb/lightbulb 2 11,

lightbulb/lightbulb 2 16

lightbulb/lightbulb 2 11

lightbulb/lightbulb 2 16

1 1 1

medicine bottle/medicine bottle 3 13,

lightbulb/lightbulb 2 1, apple/apple 3 19 (nan)

band aid/band aid 2 1,

coffee mug/coffee mug 5 16

lightbulb/lightbulb 2 1
lightbulb/lightbulb 2 1,

coffee mug/coffee mug 5 16

0.5 1 0.67

lightbulb/lightbulb 2 11, apple/apple 3 7

lightbulb/lightbulb 2 6

lightbulb/lightbulb 2 11,

lightbulb/lightbulb 2 6

lightbulb/lightbulb 2 11,

lightbulb/lightbulb 2 6

1 1 1

lightbulb/lightbulb 2 1 apple/apple 3 13,

lightbulb/lightbulb 2 6 lightbulb/lightbulb 2 16

lightbulb/lightbulb 2 1,

lightbulb/lightbulb 2 6.

lightbulb/lightbulb 2 16

lightbulb/lightbulb 2 1,

lightbulb/lightbulb 2 6

lightbulb/lightbulb 2 16

1 1 1

medicine bottle/medicine bottle 3 19,

lightbulb/lightbulb 2 11, coffee mug/coffee mug 5 16,

band aid/band aid 2 13, bell pepper/bell pepper 4 19,

apple/apple 3 19

lightbulb/lightbulb 2 11
coffee mug/coffee mug 5 16

lightbulb/lightbulb 2 11

0.5 1 0.67

lightbulb/lightbulb 2 6, apple/apple 3 13

lightbulb/lightbulb 2 1

lightbulb/lightbulb 2 1,

lightbulb/lightbulb 2 6

lightbulb/lightbulb 2 1,

lightbulb/lightbulb 2 6

1 1 1

medicine bottle/medicine bottle 3 1,

apple/apple 3 1, coffee mug/coffee mug 5 1,

band aid/band aid 2 19, lightbulb/lightbulb 2 11,

bell pepper/bell pepper 13

lightbulb/lightbulb 2 11
coffee mug/coffee mug 5 1

lightbulb/lightbulb 2 11

0.5 1 0.67

AVG 0.81 1 0.88

Table 5.1: Sample output for token “bulb” after one round of validation.
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Figure 5.2: Validation Code Flow Diagram for CBGLS
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5.2 Pilot Study to establish baseline

The focus of my thesis is to examine the compatibility of audio data with

the Grounded Learning systems. We start by collecting audio-transcribed data and

compare the performance of the Category-based Grounded Learning system. We run

small pilot studies to gather the spoken natural language descriptions and analyze

the performance of CB-GLS with the spoken language data and textual descriptions

collected using AMT presented by Pillai et al. [9]. The motive of this study is to

establish a baseline before moving towards a more advanced dataset.

5.2.1 Data Corpus

For this study, we use the visual data corpus presented by Pillai et al. [9]. The

images are collected using the kinect2 sensor, and crowd-sourced descriptions are

gathered via Amazon Mechanical Turk. The dataset contains 72 objects divided into

18 categories. Each category has 3-4 instances, and each instance has 3-4 images

taken from different angles (see figure 5.3). Language-wise, the dataset contains 3055

descriptions provided by AMT workers corresponding to the images shown. For this

study, we use a subset of this data set containing a total of 4 object categories,

where each category has 3-4 instances, and each instance has a single randomly

chosen image. The reason to use only four object categories is to maximize the data

per object to run a detailed analysis. The categories used for this pilot study are:

• Corn

• Cube
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Figure 5.3: Sample RGB images taken using a kinect2 camera and pre-
sented to AMT workers. Reprinted from [9].

• Banana

• Cucumber

The subjects for this study are graduate students from the University of Mary-

land, Baltimore County, and the attempt is to collect data from people with different

accents, keeping it gender-balanced. The user is presented with sixteen images to

be described using a microphone. Each object category has four instances. At the

end of the study, we collect around 29 descriptions corresponding to each instance,

comprising a total of 464 speech transcribed descriptions.

5.2.2 Experiments

In this section, we evaluate the performance of CBGLS (described in sec-

tion 3.2) with collected speech descriptions in the pilot study and AMT text descrip-

tions. As this is a small study to define a baseline and no crowdsourcing platform

is used, hence the spoken descriptions are far less than written data. To avoid bias,

we randomly choose a subset of AMT textual data containing 460 descriptions. The
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number of descriptions per object is approximately the same in both cases. Below

are the inputs to the system:

1. RGB-D features: To feed the model, we use RGB-D features extracted by

Pillai et al. [9]. For each image, Kinect returns a typical color image and

a 3-dimensional version where each point had a color and a location in 3-

D space. Authors extracted the RGB features from the color channels and

used kernel descriptors to extract shape and object features from the depth

channel [74], [75].

2. Annotation files: We work with two types of annotation files in the fol-

lowing experiments. In first experiment, annotation file contains the stemmed

object descriptions and the second one contains lemmatized descriptions.

3. Hyperparameters: For details about hyperparameters, please refer to sec-

tion 5.1.1.2. In the following experiments, we utilize the same parameters as

Kery [66] used, as both the works use the same image corpus.

(a) MINIMUM TOKENS PER INSTANCE = 5

(b) THRESHOLD NUMBER OF POSITIVE INSTANCES = 2

(c) NEGATIVE SAMPLE PORTION = 0.25

We perform experiments with lemmatized as well as stemmed descriptions.

We clean the descriptions to remove punctuation, stop-words, and convert them

descriptions to lower-case. We utilize Snowball English Stemmer [51] for the pur-

pose. Stemming is particularly helpful when users misspell terms while writing. For

lemmatization, we use WordNet lemmatizer [53]. In both the experiments, learned
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classifiers worked better with textual data. However, the performance difference is

not significant in the two cases. We initially hypothesized that F1 Scores for Spoken

data would be around at least 80 percent of the scores obtained using written data.

Results show that the spoken data performed well above that figure; hence, the

CBGLS system shows promising results with the spoken descriptions.

5.3 Category-based Grounded Learning with GLD

In this section, we use more advanced visual dataset (described in section 4.2)

and crowd-sourced language descriptions (sections 4.4, 4.3). We use Richards’ ap-

proach to extract the visual features [73], [72]. The approach uses layered Artificial

Neural Network to condense high-dimensional inputs to the meaningful representa-

tion of features.

5.3.1 Data Preprocessing

For audio data, we first transcribe all the descriptions using Google’s speech-

to-text API. For both speech-transcribed and text descriptions, we perform nec-

essary data cleaning, transform them to lower-case and remove punctuation. For

visual features, we concatenate all the extracted RGB-D features (NumPy arrays)

of images per instance to feed the system. As each object instance approximately

owns 3-4 images, each feature vector corresponding to an instance contains multiple

RGBD vectors concatenated in a single file. We perform three experiments and

compare the F1-scores, precision, and recall for learned object category classifiers
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with both datasets. First, we use raw descriptions with stop-words removed. The

second experiment is with stemmed descriptions and no stop-words. In the third

experiment, we use lemmatized descriptions. We also note the effect of stemming

and lemmatization on learned object classifiers. We collected 4059 speech tran-

scribed descriptions and 8250 textual descriptions via AMT. We randomly select

4059 textual descriptions in experiments performed to avoid bias.

5.3.2 Inputs to System

1. RGB-D features: We use Microsoft Kinect 3 RGB-D camera to collect color

and depth images of the data corpus described in Section 4.2. To gather RGB-

D features, we use Richard’s approach [73], which is originally based on Eitel’s

work [72]. The method combines the benefits of transfer learned RGB models

to both RGB and depth images for object recognition. Transfer learning is

established as a useful technology in computer vision for leveraging rich la-

beled data in the source domain to build an accurate classifier for the target

domain [79], [80]. Precisely, two convolutional neural networks are trained

separately, one for each modality - color and depth. The wide-RESNET50

Convolutional networks [76] pre-trained on ImageNet are used for data from

both sensor types. The next step is to combine the outputs of two CNNs to

a fully connected fusion layer. Eitel et al. use a softmax function as the last

layer to perform object classification task, removing this layer exhibit RGB-D

visual features which are further paired with language descriptions and used
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for grounded learning.

2. Annotation Files: In the following experiments, we clean the image descrip-

tions collected via AMT and work with three different types of configuration

files: raw descriptions with stop words removed, stemmed descriptions, and

lemmatized descriptions. In total, we create six annotation files - three for

text and three for speech-transcribed descriptions, one for each type.

3. Hyperparameters:

(a) MINIMUM TOKENS PER INSTANCE = 5. We decide to keep this

value as five after analyzing the language corpus. We collected five audio

descriptions per image. As each instance approximately has four images,

this makes the descriptions count to be around 20 per object instance.

After observing the language data, we believe that the token should be

present in at least one-fourth of the descriptions before an instance can be

deemed as a positive example. If the token appears less than five times,

we believe it may not be relevant enough for the corresponding instance,

see figure 5.2 for an example. The less frequent tokens can arise due to

the user’s mistake or Google’s speech errors.

(b) THRESHOLD NUMBER OF POSITIVE INSTANCES = 3. This thresh-

old value is used to regulate the number of tokens learned by the system.

In previous experiments, we used two as the threshold because of the na-

ture of the dataset. GLD dataset has an increased number of instances

per object, which helps to accommodate the tokens which are specific to

a particular object class in current settings. When we reduce this thresh-
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old, the system attempts to learn certain tokens (for example: like, use),

which are not informative.

(c) NEGATIVE SAMPLE PORTION = 0.1. We decide to keep this cutoff

value as 10 percent, because, with the higher value, we find that some

token classifiers with a few positive examples are overfitted and hence

perform poorly with test instances.

coffee mug cell phone

Tokens Frequency Tokens Frequency

black 14 smartphone 11

coffee 12 phone 8

mug 11 black 5

cup 6 Moriarty 1

nutria 1 space 1

Mississippi 1 kansas 1

Table 5.2: Few tokens and their frequency appeared in speech-transcribed descrip-

tions of coffee-mug and cell-phone instance. Low-frequency words are either gib-

berish produced by Google speech-to-text, or, do not present information about the

object.

NOTE: The results reported in the following experiments are the final medi-
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Figure 5.4: Experiment 1: Common to-

kens and the F1 scores.

Figure 5.5: Experiment 1: F1, Preci-

sion, Recall.
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ans and means of all the averaged scores corresponding to the individual classifiers

obtained after various validation runs. For some classifiers, precision is higher than

recall, and vice versa. So, it is possible that the presented F1 scores do not lie in

the range [Precision, Recall].

5.3.3 Experiment 1 - Cleaned Descriptions with stop-word removed

In this section, we perform necessary data cleaning and remove stop words

from speech transcribed and textual descriptions. In both cases, the system learned

almost the same number of tokens (50 in text, 52 in speech). The system learned

46 common tokens in the two cases, see table 5.4. The F1 scores of classifiers

corresponding to color tokens are in similar lines (highlighted in 5.4). Figure 5.5

shows the differences in the average and median F1 scores in the two cases. We see

that the system performs moderately better with speech transcribed descriptions.

The final median of per-token average F1 scores is around 0.76 in speech and 0.70

with textual data. The hyperparameters to the system make sure to ignore the

gibberish terms generated by google speech-to-text API. We see interesting behavior

with descriptions corresponding to “band-aid” object instances. When textual data

is fed, system learns two related tokens - bandages and bandaids both exhibiting

approximately the same F1 score around 0.64. In case of speech data, the system

learns two different tokens - band and aids with F1 scores 0.68 and 0.65 respectively.

In the case of the text-based AMT task, people used band aids or bandaids to

describe the object, but the use of hyphen was rare. In the case of speech data, the
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speech-to-text API always transcribed the term as band-aids, which is the correct

way of writing it. As we remove punctuation, the system now learns two separate

groundings, which convey a different meaning than what it is supposed to do. We

observe similar behavior with other compound terms like toothbrush, toothpaste,

and lightbulb.

5.3.4 Experiment 2 - Effect of Stemming

In this experiment, we remove stop words and use stemmed annotation files.

With textual data, the system learned 54 tokens and 56 in speech-transcribed data,

among which 50 are common (see figure 5.6). Stemming sometimes helps an instance

to meet threshold criteria in becoming a positive instance for a token. As expected,

the number of tokens slightly increased when compared to experiment 1. As one

can see in figure 5.7, there is no statistically significant F1-score difference in the

two cases. When compared to Experiment 1, stemming has some negative impact

on the object recognition task. Stemming can cause words to impact correctly

or incorrectly. Incorrect stemming can undoubtedly cause problems, where tokens

are stemmed that should not be, or words that should be stemmed are not. One

example could be term - opener that was widely used by workers in descriptions

of the “can opener” object, it is stemmed to open. Such behavior can sometimes

increase positive cases for classifiers, which the system should not ideally include.
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Figure 5.6: Experiment 2: Common to-

kens and their F1 scores.

Figure 5.7: Experiment 2: F1, Preci-

sion, Recall.
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Figure 5.8: Experiment 3: Common to-

kens and the F1 scores.

Figure 5.9: Experiment 3: F1, Preci-

sion, Recall.
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5.3.5 Experiment 3 - Effect of Lemmatization

In this experiment, we remove stop words and use lemmatized annotation

files. The system learned 50 tokens with textual descriptions and 56 with speech-

transcribed annotations, among which 48 are common (refer to figure 5.8). Most of

the tokens learned are common, and the final averaged F1 scores are approximately

equal in the two cases. The final median and average F1 rating of all the learned

classifiers are around 0.64 and 0.7, respectively, in both cases (see figure 5.9).

In the above experiments, we observe no significant difference among F1 scores

of the system with textual and speech-transcribed descriptions. Most of the tokens

learned are also common in all the experiments performed. Sometimes, we see a

massive difference in the F1-score of the same token learned in different experiments.

As the system chooses random test instances in each experiment, randomization

plays a crucial role in causing such behavior. Also, we observe that some tokens

exhibit zero F1-scores in the experiments. It implies that the corresponding classifier

was unable to predict True Positive even once in multiple validation runs, and this

odd behavior serves as a motivation for our next experiment.

5.3.6 Experiment 4 - Effect of PCA

Principal Component Analysis has been widely used for the representation of

shape, appearance, and motion, and PCA representation is an established technique

to tackle problems like object recognition, tracking, and detection [82, 83, 84, 85, 86].

It is a feature extraction technique that finds linear transformations of data that
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retain the maximal amount of variance to preserve as much statistical information

as possible [81]. In the case of high dimensional and very sparse data, overfitting can

become a severe problem, and PCA can help overcome it [87]. In the GLD dataset,

each RGB-D image vector has a dimension of 4096; we use the PCA technique to

transform the original feature set with the objective of preserving about 98 percent

of variance exhibited by the data. We observe that 98 percent of variance can be

achieved by looking at roughly 72 number of components on an average. Simply

put, we add an extra PCA layer in the system before classification training of each

token, which reduced the dimension of RGB-D image vectors from 4096 to 72 on an

average per token.

In this experiment, we use stemmed textual and speech-transcribed annotation

files. Figure 5.10 shows the final median and average of F1-score, Precision, and

Recall per token classifier. All the experiments described are conducted in a 64-bit

Windows 10 machine with an Intel Core i-7 processor running at 1.99 GHz using 16

GB of RAM. In the current settings, we see a decrease in training time by around

23 percent. The total training time roughly reduced from 4 hrs 10 minutes to 3 hrs

12 minutes with the same input parameters. Another improvement is the number of

zero-f1 classifiers. In previous experiments, we see some classifiers in almost every

experiment exhibiting zero F1 scores, Precision and Recall (see figure 5.12). Mostly,

such behavior is observed in token-classifiers having less number of positive instance

examples. As per the current functioning of the system, the number of negative

examples is generally much more than positives. The system uses oversampling to

balance the data, but that didn’t help. According to our understanding, such zero-
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f1 tokens appear because of overfitting. After adding the PCA layer, the system

performed slightly better with the test instances resulting in more consistent F1

scores, as demonstrated in figure 5.11.

Figure 5.10: Experiment 4: Final Me-

dian and Averaged F1, Precision, Re-

call.

Figure 5.11: Change in final Median F1

scores after PCA
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Figure 5.12: Number of classifiers exhibiting zero F1 scores. In experi-
ment 4, no classifiers showed zero F1 scores.

5.3.7 Experiment 5 - K-fold Cross Validation for multi-class imbal-

anced data

In the above experiments, we observe that the resulting F1 scores are highly

sensitive to positive and negative examples. As the system randomly chooses one test

instance from each class, such randomization leads to high fluctuations in F1 scores

even for the same tokens learned n different settings. If we train the system just once,

the results may not be appropriate indicators of the performance. In this experiment,

we attempt to mitigate such fluctuations caused by randomization by incorporating

an k-fold cross-validation based strategy to handle our multi-class imbalanced data.

In k-fold cross-validation, the initial sample is partitioned randomly into k same

sized subsamples. Among the k subsamples, a single subsample is retained as the
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Figure 5.13: F1 scores, Precision and Recall of Potato token-as-classifier
across different folds with Text and Speech annotations. x-axis repre-
sents numerical scores and y-axis denotes different folds in 6-cross valida-
tion. Note that the reported scores are averaged after multiple validation
runs.
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Figure 5.14: F1 scores, Precision and Recall of Blue token-as-classifier
across different folds with Text and Speech annotations. x-axis repre-
sents numerical scores and y-axis denotes different folds in 6-cross valida-
tion. Note that the reported scores are averaged after multiple validation
runs.

81



validation data for testing the model, and the remaining subsamples are then used

for training. The cross-validation method is then repeated k times, with each of

the k subsamples used exactly once as the testing data. The k results can then be

averaged to generate a single estimation as the performance indicator. Originally,

the system randomly chooses exactly one instance from each class as a test instance.

In our work, we modify the system to make sure that each instance from every class

is chosen as a test instance at least once. This way, every instance across all classes

will appear in training as well as the testing set at least once; hence, mitigating the

fluctuations in results caused by randomization. As shown in table 4.2 of Chapter

4, our dataset is imbalanced when the number of instances per class is concerned,

as the number of instances per class differs from one to six. To accommodate our

multi-class imbalanced dataset, we choose six-folds for cross-validation. One of the

reasons for choosing k as six is because the maximum number of instances a class

can have is six in our dataset. For each fold, a random instance from every class

is chosen to be a part of the test set such that it has not been selected in previous

folds. If all the instances are previously seen, then the random one is chosen from the

original set of instances of that class. There exist two classes (pill cutter, tissue box)

with only one instance each, which are handled separately. For these two classes,

the corresponding single instance is chosen as part of the training for three folds,

and as part of testing for the other half. We understand that these two examples

are overrepresented in our cross-validation scheme since they appear in half of the

folds. Yet, we make this tradeoff for the sake of resolving the instance imbalance

issues that cause variance in precision and recall. To summarize, we enhance the
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traditional k-fold cross-validation approach to handle our multi-class imbalanced

dataset with the following train-test split strategy.

1. For classes with exactly k number of instances, every instance is selected once

randomly in each fold to be the part of the test set.

2. For classes with n instances (1 < n < k), every instance is selected once ran-

domly in n folds. For the remaining k − n folds, an instance is selected ran-

domly from the original set of n instances to develop the test set.

3. For classes with only one instance, the single instance is selected as part of

the training set for three folds and as part of the testing set for the remaining

folds.

In this experiment, we train the system with six different training sets and val-

idate on corresponding test sets, as discussed above. The system is then validated

(as described in section 5.1.3) to calculate the averaged F1 scores per token-as-

classifier. The final averaged F1 scores of all the individual classifiers are reported

in table 5.3 across different training and validation datasets. Interestingly, when

the single instance of “tissue box” appeared in training, the system learned a few

extra tokens like “orange”. Including such instances in training helped these tokens

to meet the threshold to be determined meaningful by the system. We performed

training with lemmatized as well as stemmed annotations, and we find that the

averaged F1 scores across folds are slightly higher with speech-transcribed annota-

tions, but the difference is marginal. We do find that the system is sensitive to the

positives and negatives examples selected for training. Figures 5.13 and 5.14 shows

the variation in F1, Precision and Recall of tokens “blue” and “potato” respectively
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FOLD Text-F1- lemmatized Speech-F1-lemmatized Text-F1-Stemmed Speech-F1-Stemmed

1 0.622907509 0.635311471 0.60542034 0.60550558

2 0.618393592 0.659618764 0.62242210 0.61234263

3 0.630200659 0.608668763 0.63875180 0.62799088

4 0.579425338 0.618521458 0.56048941 0.614180375

5 0.578813933 0.595554113 0.5525 0.591252834

6 0.593548535 0.631324675 0.59747828 0.582365196

AVG 0.605948206 0.623534914 0.596177 0.6056062

Table 5.3: F1 scores with 6-fold cross-validation

across different folds. Hence k-fold cross-validation is a necessary step to perform a

reasonable comparison. We find that more than 90 percent of tokens learned are the

same in the two cases, and the final averaged scores are not significantly different.

5.3.8 Variation in F1 scores by Negative Sample Portion

In all the experiments conducted, we used 0.1 as the cutoff value of Negative

Sample Portion. We decided on a 0.1 cutoff value after conducting several tests. We

started with a 0.25, which is used by Kery [66]. With this cutoff value, F1 scores

are not satisfactory; moreover, around 15-20 percent of the tokens learned exhibited

zero F1 scores. Table 5.4 shows the number of such classifiers with different cutoff

scores with speech and text annotations. The token-classifiers with a high number

of positives performed satisfactorily, the ones with less positive examples suffered

the most. We tried pilot experiments after increasing the cutoff value to 0.5 and
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0.75, and the results were worse. Figure 5.15 demonstrates the variation in F1 scores

as the cutoff varies. We achieved promising results with 0.1 cutoff with a very few

number of zero-f1 tokens, which we finally able to eliminate in Experiment 4, as

discussed in 5.3.6

NEGATIVE SAMPLE PORTION 0.25 0.15 0.1

Zero-F1s-Speech 8 5 2

Zero-F1s-Text 10 5 2

Table 5.4: Number of token-classifiers exhibiting zero F1 scores as the Negative

Sample Portion value decrease. The values are from experiments conducted using

annotation files with stop-words removed (as in Experiment 1).

5.4 Summary

We performed experiments with different annotation files, and we found no

statistically notable difference in F1 scores, Precision, and Recall of the system.

As we saw earlier, Google’s speech-to-text produced a considerable number of low-

quality transcriptions, especially with non-American English speakers, we initially

hypothesized that the system would perform significantly better with text anno-

tations. However, the speech annotations performed slightly better in almost all

cases. We found that the crowd-sourced text descriptions are prone to typos and

spelling mistakes that sometimes can affect the positive example for an instance. We

found a few such occurrences like ttothpaste, banannas, vitimans, towl, ren, ttowel
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Figure 5.15: Variation in final median and average F1-scores as Nega-
tive Sample Portion value varies. The values are from experiments con-
ducted using annotation files with stop-words removed (as in Experiment
1).
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in textual descriptions. As the CBGLS follows the bag-of-words approach, robust

hyperparameters can mitigate the adverse effect of such data. One positive point

of using ASR systems is reducing the possibility of such typos to almost zero. We

found that the F1-scores were very sensitive to the specific positive and negative

instances chosen by the system. This is the reason why the same tokens’ F1 scores

varied significantly in different experiments. To mitigate such variance impact, we

incorporate k-fold cross-validation strategy. We find that the averaged F1-scores

across different folds are comparable in both the cases. Also, people tend to write

the same word in different ways; this especially happened with compound and hy-

phenated words like toothbrush, toothpaste, and lightbulb. Some variants of band-aids

like band aids, band-aids, and bandaids, adversely influencing the positive exam-

ples of the corresponding classifiers. With the advancements in NLP technologies,

current ASR systems are mature enough to perform such mistakes. Therefore, such

terms are either not learned with textual annotations or performed poorly.
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Chapter 6

Conclusion and Future Work

In this work, we presented the extensive and robust Grounded Language

Dataset (GLD) with RGB and depth point cloud images of 47 image classes and

their crowd-sourced language descriptions in multiple formats - text, audio, and

transcribed speech. We compare the written and spoken descriptions using param-

eters like sentence length and presence of nouns, verbs, and adjectives. Using the

BLEU metric and Word Error Rate, we attempted to measure the accuracy of tran-

scribed speech. We also note the role of accent in the accuracy of the transcriptions.

In this thesis, we have proposed adaptations of unsupervised grounded lan-

guage acquisition system [9] to work with speech-transcribed English descriptions.

After cleaning the descriptions, we perform experiments with text and speech data

using three different types of annotation files - first, with stop words removed, sec-

ond, with stemmed annotations and third, lemmatized descriptions. We discussed

the effect of various hyperparameters on the performance of the system, and present

the optimal hyperparameters to our dataset. Even with a significant amount of inac-

curate speech transcriptions, there was no substantial difference in final F1 scores in

the two cases. We also note how Principle Component Analysis can have a positive

impact on learning tokens. To summarize, the primary contributions of our work

include:
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1. Presented multi-modal Grounded Learning dataset with language descriptions

in various formats.1

2. Performed in-depth detailed comparative analysis of spoken and textual an-

notations.

3. Proposed adaptation of Grounded Learning System [9] with speech annota-

tions to reach a wider audience.

We sought to examine the existing Grounded Learning system with speech

transcribed annotations. The system use thresholds or value counts of tokens to

evaluate the importance, and we found that these thresholds play a vital role in the

system’s performance, and can vary significantly across datasets. Hence to broaden

the scope, some other techniques like part-of-speech tagging or entity recognition in

language sentences can help identifying meaningful tokens more reliably.

Secondly, we found a significant amount of noisy data in annotations collected,

especially the audio descriptions. Such behavior was prominent with short descrip-

tions when the number of words in a sentence is below 4. If we can force the time

limit requirements, we can collect better annotations, but such solutions come with

their challenges. With the textual data, spell-checks can be an effective strategy.

The system we used trains the classifiers using Logistic Regression. Practi-

cally, any other classifier can also be used for the purpose. Using others like SVM

would be a simple yet interesting next step. Moving to other, more sophisticated

deep learning-based models (like [11]) would be another exciting step to gain more

1present in https://github.com/iral-lab/UMBC_GLD
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insights. Due to the bag-of-words approach, the performance of the current sys-

tem was not adversely affected because of gibberish transcriptions. Still, such data

can impact the possible positive and negative examples for token classifiers up to

an extent. To overcome such challenges, incorporating the “Confirmation Dialogue

Strategy” in the data collection process could be an effective approach [36]. Dia-

logues are challenging to implement; maintaining the context of the conversation

and speaking the right thing at the right time is challenging with robots. But,

we believe this strategy has the potential to overcome the troublesome behavior of

speech-to-text.
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Appendix A

AMT Consent Form

Below we provide the consent form presented to the workers to collect the audio

descriptions via Amazon Mechanical Turk.

Consent form for mechanical turk participants in “Teaching a robot by active learn-

ing.” This consent form describes an experiment in which a participant provides

feedback by describing objects using spoken natural language on the Mechanical Turk

crowdsourcing platform.

Welcome to the research project on teaching robots using spoken natural

language!

DESCRIPTION: We are researchers at the University of Maryland, Baltimore

County, doing a research study to develop interfaces, communication models, and

educational tasks. Our goal is to learn how users can productively, comfortably, and

efficiently teach a robot about real world objects and actions, in this case, by using

spoken natural language.

All data collected in this study are for research purposes only. Participants will be

asked to provide natural language descriptions of objects, which will be spoken into a

microphone and recorded. Descriptions are used to help a robot learn about objects

in the world. Participants will not be asked additional questions beyond being asked

for descriptions of objects. Participation should take approximately 30 seconds or
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less per object.

RISKS and BENEFITS: The risks to your participation in this online study are

those associated with basic computer tasks, including boredom, fatigue, mild stress,

or breach of confidentiality. The benefit to you is the learning experience from par-

ticipating in a human robot interaction research, and the compensation associated

with completing each HIT. The benefit to society is the contribution to scientific

knowledge.

COMPENSATION: 6¢- 12¢ per question

PLEASE NOTE: In this study, your voice (and possibly sound in your

environment) will be recorded and stored.

CONFIDENTIALITY: Your Mechanical Turk Worker ID will be used to dis-

tribute payment to you. Please be aware that your MTurk Worker ID can potentially

be linked to information about you on your Amazon public profile page, depending

on the settings you have for your Amazon profile, but we will not be accessing any

personally identifying information about you that you may have put on your Amazon

public profile page. Your Worker ID will never be included in publications or pre-

sentations, and will be used only to disburse payment and correlate your responses.

Any reports and presentations about the findings from this study will not include

your name or any other information that could identify you, with the possible excep-

tion of your voice. Study data may be stored and shared for use in future research

studies. If we share data with other researchers doing studies, we will not include

any personally identifiable information.

SUBJECT’S RIGHTS: Your participation is voluntary. You may stop partici-
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pating at any time by closing the browser window or the program, or by returning

the HIT.

For additional questions about this research, you may contact:

Dr. Cynthia Matuszek, cmat@umbc.edu

ITE 325 B, CSEE , University of Maryland, Baltimore County

1000 Hilltop Circle, Baltimore, MD 21250

I have read and understand this consent form, and I understand that

by working on these HITS, I am participating in this online research

study. I am aware that I can contact the study author at any time for

additional information, and that I may withdraw my participation at

any time by returning or not working on Mechanical Turk HITs.
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